## Fused braids and fused Hecke algebra

Winterbraids X, Pisa, February 2020

### Section 1

Previously in Winterbraids X...

# Hecke algebra $H_n(q)$

#### Braid group:



Hecke algebra  $H_n(q)$ :

Algebraically:

$$egin{aligned} \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} \ \sigma_i \sigma_j &= \sigma_j \sigma_i \end{aligned} & ext{if } |i-j| > 1, \ egin{aligned} \sigma_i^2 &= 1 + (q-q^{-1}) \sigma_i \end{aligned} \end{aligned}$$

→ HOMFLY-PT polynomial of a link.

#### Baxterisation

• Yang–Baxter equation.  $R : \mathbb{C} \to \operatorname{End}(V \otimes V)$ .

$$R_1(\alpha)R_2(\alpha\beta)R_1(\beta) = R_2(\beta)R_1(\alpha\beta)R_2(\alpha)$$
 on  $\underbrace{V \otimes V}_{R_1}$ 

ullet If we set  $R_i(lpha) := \sigma_i + (q-q^{-1}) rac{1}{lpha-1}$  then

$$R_1(\alpha)R_2(\alpha\beta)R_1(\beta) = R_2(\beta)R_1(\alpha\beta)R_2(\alpha)$$
 in  $H_n(q)$ 

 $\bullet$  For any V there is a (local) representation :

$$H_n(q) \hookrightarrow \underbrace{V \otimes \cdots \otimes V}_{n \text{ times}}$$

→ Solutions of YB.

# Quantum groups and Schur-Weyl duality

• Say  $\dim(V) = D$ :

$$H_n(q) \hookrightarrow \underbrace{V \otimes \cdots \otimes V}_{n \text{ times}}$$

## Quantum groups and Schur-Weyl duality

• Say  $\dim(V) = D$ :

$$H_n(q) \hookrightarrow \underbrace{V \otimes \cdots \otimes V}_{q \text{ times}} \leftarrow U_q(sl_D)$$

# Quantum groups and Schur-Weyl duality

• Say  $\dim(V) = D$ :

$$H_n(q) \hookrightarrow \underbrace{V \otimes \cdots \otimes V}_{n \text{ times}} \leftarrow U_q(sl_D)$$

• From the point of view of representation theory :

## Theorem (Schur-Weyl duality)

▶ The image of  $H_n(q)$  is the centraliser of the action of  $U_q(sl_D)$   $(\forall D)$ 

Example (D=2, V is the spin 1/2 representation of  $U_q(sl_2)$ ):

▶ the image of  $H_n(q)$  is the *Temperley–Lieb algebra* (Jones pol.);

## Summary

The Hecke algebra  $H_n(q)$ :

- ▶ Quotient of braid group algebra → Knots and links invariants
- ightharpoonup Explicit Baxterisation formula  $\leadsto$  matrix solutions of YB on  $V^{\otimes n}$
- ightharpoonup Centraliser of  $U_a(sl_D)$  on  $V^{\otimes n}$

where V is the vector representation of  $U_q(sl_D)$ .

If D=2 then V is the spin 1/2 representation of  $U_a(sl_2)$ .

## Goal: After applying fusion

A new algebra  $H_{k,n}(q)$   $(\forall k)$ 

- ▶ Quotient of braid group algebra → Knots and links invariants?
- ► Explicit Baxterisation formula  $\rightsquigarrow$  matrix solutions of YB on  $W^{\otimes n}$
- ► Centraliser of  $U_a(sl_D)$  on  $W^{\otimes n}$

where  $W = S^k(V)$  is the k-th symmetric power (for  $U_q(sI_D)$ ).

If D=2 then W is the spin k/2 representation of  $U_a(sl_2)$ .

## Section 2

What is "fusion"?

 $V \otimes V$ 

 $\underline{\mathsf{Solutions}\;\mathsf{of}\;\mathsf{YB}\;\mathsf{eq.}\;:}$ 

 $V \otimes V$ 

↓ (generic fusion)

 $V^{\otimes k} \otimes V^{\otimes k}$ 

## Solutions of YB eq. :

 $V \otimes V$ 

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

Solutions of YB eq. :

$$V \otimes V$$

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

↓ (projection)

$$S^kV\otimes S^kV$$

▶ Denote  $Proj: V^{\otimes k} \otimes V^{\otimes k} \to S^k V \otimes S^k V$ .

### Solutions of YB eq. :

$$V \otimes V$$

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

↓ (projection)

$$S^kV\otimes S^kV$$

#### Solutions of YB eq. :

basic solution R(u) on  $V \otimes V$ 

▶ Denote  $Proj: V^{\otimes k} \otimes V^{\otimes k} \to S^k V \otimes S^k V$ .

$$V \otimes V$$

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

 $\downarrow (\mathsf{projection})$ 

$$S^kV\otimes S^kV$$

#### Solutions of YB eq. :

basic solution R(u) on  $V \otimes V$ 

↓ (generic fusion)

new solution  $R^{(k)}(u)$  on  $V^{\otimes k} \otimes V^{\otimes k}$ 

▶ Denote  $Proj: V^{\otimes k} \otimes V^{\otimes k} \to S^k V \otimes S^k V$ .

$$V \otimes V$$

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

↓ (projection)

$$S^k V \otimes S^k V$$

### Solutions of YB eq. :

basic solution R(u) on  $V \otimes V$ 

↓ (generic fusion)

new solution  $R^{(k)}(u)$  on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (multiply by *Proj*)

fused solution  $R^{\mathit{fus}}(u)$  on  $S^kV\otimes S^kV$ 

▶ Denote  $Proj: V^{\otimes k} \otimes V^{\otimes k} \to S^k V \otimes S^k V$ .

$$V \otimes V$$

↓ (generic fusion)

$$V^{\otimes k} \otimes V^{\otimes k} = S^k V \otimes S^k V \oplus \dots$$

↓ (projection)

$$S^kV\otimes S^kV$$

### Solutions of YB eq. :

basic solution R(u) on  $V \otimes V$ 

↓ (generic fusion)

new solution  $R^{(k)}(u)$  on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (multiply by *Proj*)

fused solution  $R^{\mathit{fus}}(u)$  on  $S^kV\otimes S^kV$ 

▶ Denote  $Proj: V^{\otimes k} \otimes V^{\otimes k} \rightarrow S^k V \otimes S^k V$ .

 $\underline{\mathsf{Key point}} : \mathsf{Proj} \in \mathsf{End}_{\mathsf{U_q}(\mathsf{sl_D})}(...) \rightsquigarrow \mathsf{Hecke algebra} \ .$ 

Given arbitrary parameters  $(c_1,\ldots,c_{2k})$ , explicit formula for  $R^{(k)}(u)$  and :

 $R^{(k)}(u)$  satisfies YB on  $V^{\otimes k} \otimes V^{\otimes k}$ 

Given arbitrary parameters  $(c_1,\ldots,c_{2k})$ , explicit formula for  $R^{(k)}(u)$  and :

$$R^{(k)}(u)$$
 satisfies YB on  $V^{\otimes k} \otimes V^{\otimes k}$ 

Note: if you are a *braid person*, you will think "cabling" and agree very quickly...

Given arbitrary parameters  $(c_1,\ldots,c_{2k})$ , explicit formula for  $R^{(k)}(u)$  and :

$$R^{(k)}(u)$$
 satisfies YB on  $V^{\otimes k} \otimes V^{\otimes k}$ 

Note: if you are a *braid person*, you will think "cabling" and agree very quickly...

• Step 2 (Projection with Proj).

<u>Thm.</u>: There is a specific choice of  $(c_1, \ldots, c_{2k})$  such that

$$R^{(k)}(u)$$
 commutes with *Proj*

Given arbitrary parameters  $(c_1,\ldots,c_{2k})$ , explicit formula for  $R^{(k)}(u)$  and :

$$R^{(k)}(u)$$
 satisfies YB on  $V^{\otimes k} \otimes V^{\otimes k}$ 

Note: if you are a *braid person*, you will think "cabling" and agree very quickly...

• Step 2 (Projection with Proj).

<u>Thm.</u>: There is a specific choice of  $(c_1, \ldots, c_{2k})$  such that

$$R^{(k)}(u)$$
 commutes with *Proj*

 $\rightsquigarrow R^{fus}(u) := \text{the restriction on } S^k V \otimes S^k V.$ 

#### Matrices :

$$R(u)$$
 on  $V \otimes V$ 

↓ (generic fusion)

$$R^{(k)}(u)$$
 on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (projection)

$$R^{fus}(u)$$
 on  $S^kV\otimes S^kV$ 

#### Algebras:

#### Matrices:

$$R(u)$$
 on  $V \otimes V$ 

↓ (generic fusion)

$$R^{(k)}(u)$$
 on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (projection)

$$R^{fus}(u)$$
 on  $S^k V \otimes S^k V$ 

#### Algebras:

 $\leftarrow$  Hecke algebra  $H_n$ 

#### Matrices :

$$R(u)$$
 on  $V \otimes V$ 

↓ (generic fusion)

$$R^{(k)}(u)$$
 on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (projection)

$$R^{fus}(u)$$
 on  $S^kV\otimes S^kV$ 

#### Algebras:

 $\leftarrow$  Hecke algebra  $H_n$ 

#### Matrices:

- R(u) on  $V \otimes V$ 
  - ↓ (generic fusion)
- $R^{(k)}(u)$  on  $V^{\otimes k} \otimes V^{\otimes k}$ 
  - ↓ (projection)
- $R^{fus}(u)$  on  $S^kV\otimes S^kV$

#### Algebras :

 $\leftarrow$  Hecke algebra  $H_n$ 

 $\ \ \leftarrow$  (bigger) Hecke algebra  $H_{kn}$ 

← ?? fused Hecke algebra??

#### Matrices :

# Algebras :

R(u) on  $V \otimes V$ 

↓ (generic fusion)

 $R^{(k)}(u)$  on  $V^{\otimes k} \otimes V^{\otimes k}$ 

↓ (projection)

 $R^{fus}(u)$  on  $S^k V \otimes S^k V$ 

 $\leftarrow$  Hecke algebra  $H_n$ 

 $\leftarrow$  (bigger) Hecke algebra  $H_{kn}$ 

 $\leftrightarrow$  ?? fused Hecke algebra??

Answer : Fused Hecke algebra =  $Proj \cdot H_{kn} \cdot Proj$ 

## Section 3

Fused Hecke algebra

(joint work with Nicolas Crampé)

## Symmetric group

• Elements of  $S_n$  (example with n=3):



• Multiplication : concatenation + following the lines ( $\sim$  composition).

## Fused permutations (q = 1)

• Objects : Examples (k = 2 and n = 3) :







connecting dots with  $\boldsymbol{k}$  lines starting from and arriving at each dot.

# Fused permutations (q = 1)

• Objects : Examples (k = 2 and n = 3) :







connecting dots with k lines starting from and arriving at each dot.

 $\bullet$  multiplication : concatenation + following all possible paths. Example :

# Fused Hecke algebra $H_{k,n}(q)$ .

Deformation of the case q = 1.

Example of objects (fused braids) :



Homotopy + local relations:

The Hecke relation:

The idempotent relations:

$$X = q$$
 and  $X = q^{-1}$   $X = q^{-1}$  and  $X = q^{-1}$ 

#### Multiplication : concatenation + following all paths with q-coefficients :

$$= \frac{1}{(1+q^2)^2} \left( +q +q +q^2 \right)$$

$$= \frac{1}{(1+q^2)^2} \left( +(q-q^{-1}+2q^3) +q^2 \right)$$

 $\rightsquigarrow$  Facts: Family of algebras  $H_{k,n}(q)$  forming a chain:

$$H_{k,1}(q) \subset H_{k,2}(q) \subset \ldots \subset H_{k,n}(q) \subset H_{k,n+1}(q) \subset \ldots$$

of finite-dimensional algebras, flat deformations of the case q=1, with a basis of diagrams.

# Braid group in $H_{k,n}(q)$

The shuffle elements:

$$\Sigma_i := \prod_{i=1}^{n} \cdots \prod_{i=1}^{n} \prod_{j=1}^{n} \cdots \prod_{i=1}^{n} \cdots \prod_{j=1}^{n} (k=2)$$

The elements  $\Sigma_i$  satisfy the braid relations :

$$\Sigma_i \Sigma_{i+1} \Sigma_i = \Sigma_{i+1} \Sigma_i \Sigma_{i+1}$$

$$\Sigma_i \Sigma_j = \Sigma_j \Sigma_i \quad \text{if } |i-j| > 1.$$

+ a characteristic equation of order k + 1.

Example 
$$(k = 2)$$
:  $(\Sigma_i - q^4)(\Sigma_i + 1)(\Sigma_i - q^{-2}) = 0$ 

 $\rightsquigarrow$  Finite-dimensional quotients of the braid group algebra inside  $H_{k,n}(q)$ .

## Theorem (Baxterisation formula)

The following satisfies the YB equation in  $H_{k,n}(q)$ :

$$R_i(\alpha) = \sum_{p=0}^k q^{k-p} \begin{bmatrix} k \\ p \end{bmatrix}_q^2 \frac{(1-q^{-2}) \dots (1-q^{-2(k-p)})}{(\alpha q^{-2(k-1)}-1) \dots (\alpha q^{-2p}-1)} \Sigma_i^{(p)} ,$$

where  $\Sigma_i^{(p)}$  are partial shuffle elements :

$$\Sigma_{i}^{(0)} := \begin{bmatrix} 1 & i-1 & j & i+1 & i+2 & n \\ \cdots & & \end{bmatrix} \qquad (k=2)$$

$$\Sigma_{i}^{(1)} := \begin{bmatrix} 1 & i-1 & j & i+1 & i+2 & n \\ \cdots & & & \end{bmatrix} \qquad (k=2)$$

$$\Sigma_{i}^{(2)} := \begin{bmatrix} 1 & i-1 & j & i+1 & i+2 & n \\ \cdots & & & \end{bmatrix} \qquad (k=2)$$

## Schur-Weyl duality

•  $W = S^k(V)$  then :

$$H_{k,n}(q) \hookrightarrow \underbrace{W \otimes \cdots \otimes W}_{n \text{ times}}$$

 $\rightsquigarrow$  Solutions of braid relation and YB on  $W = S^k(V)$ .

## Schur-Weyl duality

$$dim(V) = D$$

•  $W = S^k(V)$  then :

$$H_{k,n}(q) \hookrightarrow \underbrace{W \otimes \cdots \otimes W}_{n \text{ times}} \leftarrow U_q(sl_D)$$

- $\rightsquigarrow$  Solutions of braid relation and YB on  $W = S^k(V)$ .
- From the point of view of representation theory :

#### **Theorem**

▶ The image of  $H_{k,n}(q)$  is the centraliser of the action of  $U_q(sl_D)$   $(\forall D)$ .

## Kernel from representation theory

- Step 1. Construct the Bratteli diagram.
- Step 2. Understand which representations are in the kernel.

## Theorem (Step 1. Bratteli diagrams)

- ▶ Irreducible reps of  $H_{k,n}(q) \stackrel{1-1}{\longleftrightarrow} \{\lambda \vdash kn \text{ with } \ell(\lambda) \leq n\}$
- Branching rules :

$$\mu \longrightarrow \lambda \ \Leftrightarrow \ \mu \subset \lambda$$
 and  $\lambda/\mu$  contains at most one box per column

## Theorem (Step 2. Kernel for $U_q(sl_D)$ )

At level D+1, kill all partitions with exactly D+1 lines and then all their descendants in the next levels.

# Bratelli diagram of $H_{k,n}(q)$ (k=1)



# Centralisers for k = 1, $U_q(sl_2)$ (spin 1/2)



# Centralisers for k = 1, $U_q(sl_3)$



# Representation theory of $H_{k,n}(q)$ (k=2)



Note that there is no arrow from  $\mu =$  to  $\lambda =$  even if  $\mu \subset \lambda$  since  $\lambda/\mu$  contains two boxes in the same column.

# Centralisers for k = 2, $U_q(sl_2)$ (Spin 1)



The kernel is generated at level 3 by



## Kernel algebraically

• Given k and  $U_q(sl_D)$ , the kernel is generated by the following element :

## Theorem (Kernel)

Start with the q-antisymmetriser on D+1 strands, and add k-1 vertical strands at each dot.

• Example  $U_q(sl_2)$ ):

#### Conclusions

We defined algebras  $H_{k,n}(q)$  on "fused braids" and :

- lt contains a realisation of the braid group.
- ► There is an explicit **Baxterisation formula**.
- ▶ Schur–Weyl duality for  $W = S^k(V)$ .

These algebras live above the **centralisers** of  $U_q(sl_D)$ :

$$\dots \subset H_{k,n}(q) \subset H_{k,n+1}(q) \subset \dots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\dots \subset \operatorname{End}_{U_{q}(sl_{D})}(W^{\otimes n}) \subset \operatorname{End}_{U_{q}(sl_{D})}(W^{\otimes n+1}) \subset \dots$$

+ Description of the kernels.