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Outline of the three talks

1. Surfaces in 4-space,
Whitney towers and their trees,
4-dimensional Jacobi identity

2. Higher-order intersection invariants,
classification of order n twisted Whitney towers in B,
higher-order Arf invariant conjecture

3. Intersection invariants for 2-spheres in 4-manifolds



Surface sheets A and Bin B*=B3 x| with p=Ah B
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Two views of A and Bin B*=B3 x| with p=AhB
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Visualize: Hopf link = 9AUIB C S® = 9(B® x I)



Disjoint surface sheets in B* = B3 x |




Guiding arc for Finger Move




After Finger Move
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Finger move: Before and after
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Finger move
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Will usually only show the center pictures.



Larger scale view of finger move

>
—>

I
P

Finger move

Will usually only show center top and/or center bottom pictures.



Intersections p, g € A B and a Whitney disk W pairing them

choose W
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Whitney move: Before and after
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Whitney disks in 4-manifolds

Have just seen a model Whitney disk W pairing p,q € A B in B*:
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Definition:
A Whitney disk pairing p,q € A th B in a 4-manifold X* has a
neighborhood obtained by introducing plumbings into the model.

So a Whitney disk may have interior self-intersections and
intersections with other surfaces.



Successful Whitney move: W is ‘clean’ and ‘framed’

Eliminates p, g € A M B without creating new intersections in A or B:

W is clean = embedded & interior disjoint from all surfaces.
W is framed = W has appropriate parallels.

Want to ‘measure’ obstructions to successful Whitney moves...



W not clean ~» Whitney move creates new intersections:
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W not clean ~~ Whitney move creates new intersections:

re WhC ~ r,r"eAm C after W-move on A:

Visualize: The Borromean Rings 0A U 0B U dC C 0B*



Pair ‘higher-order intersections’ with ‘higher-order Whitney disks’...?
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Visualize: The Bing-double of the Hopf link in 0B*.



Definition:
A Whitney tower on A? &5 X% is defined by:

1. A itself is a Whitney tower.

2. If W is a Whitney tower and W is a Whitney disk pairing
intersections in WV, then the union WU W is a Whitney tower.
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Part of a Whltney tower!

Goal: Study W to get info about A...



Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:
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Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:
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Splitting Whitney towers by finger-moves:




Splitting Whitney towers by finger-moves:
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In a split Whitney tower each Whitney disk contains only one
‘problem’ (un-paired intersection or Whitney disk 0-arc):
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All singularities in split Whitney towers are near trivalent trees:
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Trees ‘bifurcate down’ from unpaired intersections.
Univalent vertices inherit labels from components of the underlying
properly immersed surface A=A UA, U - UA,,.
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Rooted trees

Identify non-associative bracketings of elements of {1,2,..., m} with
rooted unitrivalent trees (labeled and vertex-oriented):

(’7./) — <
and recursively
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Here a singleton is identified with a rooted edge:

(V=i +— —i



Un-rooted trees = inner products of rooted trees

Gluing two rooted trees / and J together at their roots yields an
un-rooted tree ([, J) :=1 — J.

Example: _
(k). G, 1) = >=<

Example:
(1L.)).K) = >«



Paired intersections — rooted trees

Whitney disk W,; ) pairing A; M A;  +——  rooted tree {J,
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Paired intersections — rooted trees

Recursively: W, ) pairing W, h W, +— —< 7
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root edge of (/, J) contained in interior of W,



Un-paired intersections — un-rooted trees

pEW(I,J)mWK — tP:<(/7J)7K>: .l/>_K

Glue together root vertices of (/,J) and K at p € W, j h Wk



Why not keep track of edge in t, corresponding to p?
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Because can ‘move’ un-paired intersection to any edge of its tree!




Close-up view before Whitney move




Close-up view after Whitney move




Towards ‘twisted’ trees for twisted Whitney disks...

Recall: Whitney move guided by W uses two parallel copies of W':



The twisting w(W) € Z of W is the relative Euler number of a

normal section W over OW determined by the sheets:

ow B
Normal to B —

A\
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Tangent to A4 |

If w(W) =0, then W is framed.
If (W) # 0, then W is twisted and a W-Whitney move will create
intersections between the parallel copies of W...



Twisted Whitney disks — twisted trees

Define the o-tree
J? =) —on

by labeling the root of J with the ‘twist’ symbol <.

These o-trees are called ‘twisted trees’ since they are associated to
twisted Whitney disks:

W, — J° ifw(W,) £0.

So we sometimes refer to the un-rooted t, as ‘framed trees’..



Definition:
The intersection forest t(WW) of a Whitney tower W is the multiset:

tV) =Y e-t, +> w(W))-J?
where ‘formal sum’ is over all unpaired p and all twisted W, in W.

€, = % is usual sign of the unpaired transverse intersection point p
(orientation conventions suppressed).

w(W,) € Z is twisting of W,.

Think of t(W) C W.



Example: L bounds W = D; U Do U D3 U Wy 5y with t(W) = >—3

Moving into B* from left to right, starting with L C S® = 9B*:

LD



Example: L bounds W = D; U Do U D3 U Wy 5y with t(W) = >—3

Moving into B* from left to right, starting with L C S® = 9B*:




Example: L bounds W = D; U Do U D3 U Wy 5y with t(W) = >—3

Moving into B* from left to right, starting with L C S3 = 0B*:

L,
L, 7

D,
ISP,

v

P = VV(LQ) M D3 — tp = <(1,2),3> = %>— 3= t(W)



Example: Fig-8 knot bounds W = D; U Wy 1) with t(W) = +(1,1)®

Moving into B* D; is the track of a null-homotopy of K:

noo

K:8D1C53



Example: Fig-8 knot bounds W = D; U Wy 1) with t(W) = +(1,1)®

Moving into B* Dj is the track of a null-homotopy of K:

K =0D, C S3 part of Wy 1) cap off unlink...



Realization

e By iterated Bing-doubling can realize any collection of signed
trees as t(W) for W on 2-disks &+ B* bounded by L C S3.

e Exist restrictions on possible t(W) for W on 2-spheres & B*.
(See next talk...)



No trees = No problems = Embedding!

If W is a Whitney tower on A such that t(W) = (),
then A is regularly homotopic to an embedding:

Do the clean framed Whitney moves on all the Whitney disks in W
starting at the ‘top level'...



Higher-order Whitney disks and intersections

Definition:
e The order of a tree is the number of trivalent vertices.

e The order of a Whitney disk or an intersection point is the order
of the corresponding tree.




Order n framed Whitney towers

Definition:
W is an order n framed Whitney tower if

e every framed tree t, in t(W) is of order > n, and

e there are no o-trees in t(W).

So in an order n framed W all unpaired intersections have order > n,
and all Whitney disks are framed.



Order n twisted Whitney towers

Definition:
W is an order n twisted Whitney tower if

S

e every framed tree t, in t(WV) is of order >

NS

o every twisted o-tree in t(W) is of order >



Intersection invariants from t()V) and order-raising obstruction theory

Let W be an order n twisted Whitney tower on A 3~ X.

Will define (next talk) abelian groups 7, such that if the order n
twisted intersection invariant 7,°(W) := [t(W)] € T, vanishes, then
A is homotopic to A’ supporting an order n + 1 twisted Whitney
tower.



Classification of order n twisted WV on U;D? & B*

Theorem

A link L C S® bounds immersed disks supporting an order n + 1
twisted Whitney tower YW C B* if and only if L has vanishing Milnor
invariants and higher-order Arf invariants through order n.

Idea of proof: Identify the order-raising intersection invariants 7’
with Milnor and higher-order Arf invariants. (Next talk.)



General classification of order n Whitney towers?

Open Problem:
Find invariants of order n YV on immersed surfaces in 4-manifolds.

Partial results so far. Can formulate similar tree-valued invariants as
for links. Need to understand relations in target groups...

Note: An embedded surface is a Whitney tower of order n for all n.
So related to the (difficult!) embedding problem.



Other complexity gradings: Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all t, € t()V) having
distinctly-labeled vertices are of order > n.

Non-repeating Whitney towers characterize being able to ‘pull apart’
components:

Theorem:
A=U",A; & X bounds an order m — 1 non-repeating VW

if and only if
A is homotopic to A' = U, A; with A, A = () for all i # j.



Other complexity gradings: Symmetric Whitney towers

A Whitney tower W is symmetric if the interiors of all Whitney disks
in YV only intersect Whitney disks of the same order.

A symmetric Whitney tower of order (2n — 2) has height n.

Theorem: (Cochran—Teichner)

If L C S bounds W C B* of height n+ 2, then L is n-solvable
in the sense of Cochran—Orr—Teichner.

Open Problem:

Formulate invariants corresponding to a ‘height-raising’ obstruction
theory for symmetric Whitney towers.



Geometric Jacobi Identity in 4-dimensions

There exist four 2-spheres in 4-space supporting ¥V with intersection
forest t(W) equal to:

I AKX

Conclude: The local ‘IHX relation’ of finite type theory is needed in
the target of any invariant represented by t(W):

TG X =0



Geometric Jacobi Identity in 4-dimensions

Start with disjoint embeddings A; : S — B* i =1,2,3,4.
Then do finger moves of A;, Ay, As into Ay:

A; 4,

W(i 4 W(z, 4

Wi

Whitney disks on the right are inverse to the finger moves.



Geometric Jacobi Identity in 4-dimensions

Will construct new Whitney disks with these boundaries:

4; T N\4,
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First change collar of W3 4); creating {q,r} = Ax th W(3.4):




Then add W5 (34)) pairing {q, r} = Az th W(34):

W(s.4) and W(3,(34)) are contained in the ‘present’ slice of B*=B3x 1

Creates p = A; N W2,3.4)).



p = Al N VV(27(3’4)) = t, = i>—<%
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Exercise: Construct other two trees of the IHX relation analogously
using past and future...

HINT: Here in ‘present’ red and blue Whitney disks have clean collars
along horizontal Aj-sheet.

(See Jacobi identities in Low-dimensional Topology, Compositio
Mathematica vol. 143, no. 3 May 2007, or Winterbraids X notes.)



