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Outline of this talk

• Twisted Whitney towers and their trees

• Boundary twists and interior twists on Whitney disks

• Intersection invariants for order n twisted Whitney towers

• Classification of order n twisted Whitney towers in B4

• The Higher-order Arf invariant Conjecture



Preview

Key case of the Higher-order Arf invariant Conjecture
in the setting of ‘finite type’ invariants:

The following sum of trees represents a non-trivial finite type
concordance invariant of 2-component links
(first-non-vanishing, Z/2Z-coefficients):
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This invariant is finite type degree 6 = order 5.

J-B. Meilhan and A. Yasuhara have characterized all finite type
concordance invariants of string links in degrees ≤ 5.



Surface sheets Ai and Aj in B4 = B3 × I .

Whitney disk W(i ,j) pairing {q, p} = Ai t Aj :

(i,j)

i

j

W

A

A

q p

Ai ∪W(i ,j) ⊂ B3×‘present’, while Aj extends into ‘past and future’.

In general, a Whitney disk may have transverse interior
self-intersections, and intersections with other surfaces.



Definition:
A Whitney tower on A2 # X 4 is defined by:
1. A itself is a Whitney tower.
2. If W is a Whitney tower and W is a Whitney disk pairing

intersections in W , then the union W ∪W is a Whitney tower.

Goal: Study W to get info about A...



So a Whitney tower W ⊂ X 4 on a properly immersed surface
A2 # X 4 is the union of A = ∪iAi and ‘layers’ of Whitney disks.



The intersection forest multiset t(W) of a Whitney tower W

W 7→ t(W) =
∑

εp · tp +
∑

ω(WJ) · J

Ai i i i

‘framed tree’ tp ←p p unpaired intersection with sign εp = ±1,
‘twisted tree’ J := J −− ←p WJ with twisting ω(WJ) 6= 0 ∈ Z.



Paired intersections −→ rooted trees

W(i ,j) pairing Ai t Aj 7−→ rooted tree −−< j
i = (i , j)

(i,j)
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Paired intersections → rooted trees

Recursively: W(I,J) pairing WI t WJ 7−→ −−< J
I = (I , J)

(I,J)

I

J

W

W

W

Rooted trees I , J = non-associative bracketings from {1, 2, 3, . . . ,m}
Notation convention: Singleton subscript Wi denotes component Ai .



Un-paired intersections → un-rooted trees

Inner product ‘fuses’ rooted edges into single edge:

p ∈ W(I,J) t Wk 7−→ tp = 〈(I , J),K 〉 = I
J >−− K

K
pW

WJ

IW

W(I,J)



Recall: Whitney move uses two parallel copies of W :

W

p
q



-trees for twisted Whitney disks

The twisting ω(W ) ∈ Z of W is the relative Euler number of a
normal section ∂W over ∂W determined by the sheets:

∂W

pq

A

B
Normal to B

Tangent to A

WJ 7→ J := J −− if ω(WJ) 6= 0.



Boundary twist on W changes ω(W ) by ±1,
creates intersection p between W and a sheet paired by W

‘Side view’ near a point in ∂W :

boundary
twist of W

with blue
parallel of W
that intersects W:

W

p

Can create any clean W(I,J) by finger moves,
then boundary twist into J-sheet changes t(W) by:

I −−< J
J ± I −−< J



±-interior twist on W changes ω(W ) by ∓2 and creates p ∈W tW

After the interior twist,
near an arc in W that runs between the two sheets:

+ 1

- 1

- 1

+ 1

- 1

- 1

p

and
with
blue
parallel
of W

W

Can create any clean WJ by finger moves,
then ±-interior twist changes t(W) by:

±〈J , J〉 ∓ 2 · J



• Ultimate goal: For A ⊂ W ⊂ X 4, want to define invariants from
t(W) that only depend on the homotopy class of A, and give
obstructions to A being homotopic to an embedding.

• This talk describes the attainment of this goal for Whitney
towers W ⊂ B4 on collections A of immersed disks bounded by
a link L ⊂ S3 = ∂B4.



Obstruction theory for links bounding twisted Whitney towers

• W is an order n twisted Whitney tower if t(W) contains only
framed trees of order ≥ n and twisted trees of order ≥ n/2,
where order := number of trivalent vertices.

• Will define abelian groups Tn and intersection invariants
τn (W) := [t(W)] ∈ Tn such that:
L bounds an order n twisted W with τn (L) := τn (W) = 0
if and only if L bounds an order n + 1 twisted Whitney tower.

• τn (L) ←→ Milnor invariants and higher-order Arf invariants



Towards intersection invariants τn (W) ∈ Tn for order n twisted
Whitney towers W ⊂ B4 bounded by L ⊂ S3

Tn := free abelian group on order n framed trees modulo
local antisymmetry (AS) and Jacobi (IHX) relations:

AS relations ⇒ signs of the framed trees in t(W) only depend on the
orientation of L = ∪i∂D2 ⊂ ∪iD2 Ai

# B4 after mapping to Tn.

Talk I ⇒ any t(W) can be changed by creating IHX trees.



The odd order target groups T2j−1

Obstructions to raising twisted order from 2j − 1 to 2j :
Definition:
T2j−1 is the quotient of T2j−1 by boundary-twist relations:

i −−< J
J = 0

where J ranges over all order j − 1 subtrees.

Since via boundary-twisting:

i −−< J
J 7→ i −−< J + trees of order ≥ 2j

and the trees on the right are allowed in order 2j twisted W .



The even order target groups T2j

Obstructions to raising twisted order from 2j to 2j + 1:
Definition:
T2j is the quotient of the free abelian group on
framed trees of order 2j and -trees of order j
by the following relations:

1. AS and IHX relations on order 2j framed trees
2. symmetry relations: (−J) = J
3. twisted IHX relations: I = H + X − 〈H ,X 〉
4. interior-twist relations: 2 · J = 〈J , J〉

Remark: −−< J
J generate the torsion subgroup of T := ⊕Tn .



Intersection/obstruction theory for order n twisted Whitney towers

Definition:
For an order n twisted Whitney tower W define

τn (W) := [t(W)] ∈ Tn

Theorem:
If L ⊂ S3 bounds an order n twisted W ⊂ B4 with τn (W) = 0 ∈ Tn ,
then L bounds an order n + 1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn
‘algebraic cancellation’ in Tn into ‘geometric cancellation’ by new
layer of Whitney disks.



Quick review of Milnor invariants

For L = L1 ∪ L2 ∪ · · · ∪ Lm ⊂ S3 and G = π1(S3 \ L):

[Li ] ∈ Gn+1 (n+1)th lower central subroup =⇒ Gn+1

Gn+2
∼= Ln+1

L = ⊕nLn the free Z-Lie algebra on {X1,X2, . . . ,Xm}.

Define the order n Milnor invariant µn(L):

µn(L) :=
m∑

i=1
Xi ⊗ `i ∈ L1 ⊗ Ln+1

where `i is the image in Ln+1 of the i-th longitude [Li ] ∈ Gn+1
Gn+2

.

Turns out: µn(L) ∈ Dn := ker{L1 ⊗ Ln+1
bracket−−−−→ Ln+2}.



Summation maps ηn ‘connect’ τn (W) and µn(L)

Definition:
The map ηn : Tn → L1 ⊗ Ln+1 is defined on generators by

ηn(t) :=
∑
v∈t

Xlabel(v) ⊗ Bracketv(t) ηn(J ) := 1
2 ηn(〈J , J〉)

Here J is a rooted tree of order j for n = 2j .



Examples of ηn for n = 1, 2

η1(1−−< 3
2 ) = X1 ⊗ −−< 3

2 + X2 ⊗ 1−−< 3 + X3 ⊗ 1−−< 2

η2( −−< 2
1 ) = 1

2 η2(
1
2 >−−< 2

1)



The summation maps ηn ‘connect’ τn (W) and µn(L)

The image of ηn is equal to the bracket kernel Dn < L1 ⊗ Ln+1.

Theorem:
If L bounds a twisted Whitney tower W of order n, then the order q
Milnor invariants µq(L) vanish for q < n, and

µn(L) = ηn ◦ τn (W) ∈ Dn

Proof idea: Gropes in B4 \W display longitudes of L as iterated
commutators exactly according to ηn ◦ τn (W)...



The order n twisted Whitney tower filtration on links

Wn := {links in S3 bounding order n twisted Whitney towers in B4}
order n+1 twisted Whitney tower concordance

Obstruction theory =⇒ Wn is a finitely generated abelian group

Via Cochran’s Bing-doubling techniques get epimorphisms

Rn : Tn � Wn

which send g ∈ Tn to the equivalence class of links bounding an
order n twisted Whitney tower W with τn (W) = g .



Example of Rn : Tn �Wn for n = 2
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1 3

R2 B4into 

W(1,2)

L
L

1

2

L3

D1
D2

D3

L bounds W with τ2 (W) = 1
2 >−−−< 1

3



Example of Rn : Tn �Wn for n = 2

1

2

D1

D2
L2

L
1

D2

R2

2 1

W

W

B4into

L bounds W with τ2 (W) = 2
1 >−−−



Computation of Wn for n ≡ 0, 1, 3 mod 4

Have commutative triangle diagram of epimorphisms:

Tn
Rn // //

ηn !! !!

Wn

µn
����

Dn

Theorem:
The maps ηn : Tn → Dn are isomorphisms for n ≡ 0, 1, 3 mod 4.

Corollary:
For n ≡ 0, 1, 3 mod 4:

• µn : Wn → Dn and Rn : Tn → Wn are isomorphisms.
• τn (W) ∈ Tn only depends on L = ∂W .



Towards computation of Wn for remaining cases n ≡ 2 mod 4

Dn is a free abelian group of known rank for all n, so have a complete
computation of Wn

∼= Dn ∼= Tn in three quarters of the cases.

Towards understanding the remaining cases n ≡ 2 mod 4:
Proposition:
The map 1⊗ J 7→ −−−< J

J ∈ T4j−2 induces an isomorphism:

Z2 ⊗ Lj ∼= Ker(η4j−2 : T4j−2 → D4j−2)



Towards computation of Wn for remaining cases n ≡ 2 mod 4

Extending the algebraic side of the triangle:

〈1⊗ J〉
ff

&&

Z2 ⊗ Lj
%%

%%

〈 −−−< J
J〉 // // T4j−2

R4j−2
// //

η4j−2
## ##

W4j−2

µ4j−2
����

D4j−2



Towards defining higher-order Arf invariants

R4j−2 induces αj : Z2 ⊗ Lj � K4j−2 := ker{µ4j−2 : W4j−2 � D4j−2}

〈1⊗ J〉
ee

%%

Z2 ⊗ Lj
αj

// //

%%

%%

K4j−2
��

��

〈 −−−< J
J〉 // // T4j−2

R4j−2
// //

η4j−2
## ##

W4j−2

µ4j−2
����

D4j−2



Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

(Z2 ⊗ Lj)/Kerαj

〈1⊗ J〉
gg

''

Z2 ⊗ Lj

OOOO

αj
// //

''

''

K4j−2
jj

Arf j
jjjj

��

��

〈 −−−< J
J〉 // // T4j−2

R4j−2
// //

η4j−2
## ##

W4j−2

µ4j−2
����

D4j−2

Arf j := K4j−2 → (Z2 ⊗ Lj)/Kerαj



Higher-order Arf invariants and computation of Wn for all n

Corollary:
The groups Wn are classified by Milnor invariants µn and, in addition,
higher-order Arf invariants Arf j for n = 4j − 2.

In particular, a link bounds an order n + 1 twisted W if and only if its
Milnor invariants and higher-order Arf invariants vanish up to order n.



Higher-order Arf invariant diagram

(Z2 ⊗ Lj)/Kerαj

Z2 ⊗ Lj

OOOO

αj
// //

''

''

K4j−2
jj

Arf j
jjjj

��

��

T4j−2
R4j−2
// //

η4j−2
## ##

W4j−2

µ4j−2
����

D4j−2



Conjectured higher-order Arf invariant diagram

Z2 ⊗ Lj
$$

$$

K4j−2
oo

Arf j
oooo

��

��

T4j−2
R4j−2
// //

η4j−2
## ##

W4j−2

µ4j−2
����

D4j−2

Conjecture: (Higher-order Arf invariant conjecture)
Arf j : K4j−2 → Z2 ⊗ Lj are isomorphisms for all j .

This conjecture would imply Wn
τn−→ Tn is an isomorphism for all n.



Determining the image of 2 ≤ Arf j ≤ Z2 ⊗ Lj?

• Arf1 corresponds to classical Arf invariants of the link
components. Are the Arf j for j > 1 also determined by finite
type isotopy invariants?

• The links R4j−2( −−< J
J ) realizing the image of Arf j are known

not to be slice by work of J.C. Cha.

• Fundamental first open test case: Does the Bing double of the
Figure-8 knot R6 ( −−< (1,2)

(1,2) ) ∈ W6 bound an order 7 twisted
Whitney tower?

• If the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arf j are trivial for all j ≥ 2.



Re-formulations of the higher-order Arf invariant Conjecture

• There does not exist A : S2 ∪ S2 # B4 supporting W with

t(W) = −−< (1,2)
(1,2)

(possibly + higher-order trees).

• The Bing double of any knot with non-trivial classical Arf
invariant does not bound an order 6 framed Whitney tower.

• There does not exist A : S2 ∪ S2 # B4 supporting W with

t(W) = 〈((((((1, 2), 1), 2), 1), 2), 1)〉+〈((((((1, 2), 2), 1), 2), 1), 2)〉

(possibly + higher-order trees).



Bing(Fig8) bounds W with t(W) = ((1, 2), (1, 2))

W = D1 ∪ D2 ∪W(1,2) ∪W(1,2),(1,2))

W((1,2),(1,2))

W(1,2)L

L

1

2



More questions/problems

• Equivariant Milnor and Arf invariant correspondence with
π1-decorated tree-valued intersection invariants for order n
Whitney towers bounded by links in non-simply-connected
3-manifolds?

• Use t(W) to efficiently formulate indeterminacies in Milnor
invariants?

• Higher-order Arf invariants for 2-spheres supporting Whitney
towers in 4-manifolds?



From proof of ‘order raising’ obstruction theory

Key step in ‘algebraic cancellation’ ⇒ ‘geometric cancelation’:
Will ‘transfer’ p from W to p′ ∈ W ′ to pair with q.

A

A

W W'
p q



Finger move pushing down along W into A:

A

A

W W'
q



Finger move pushing along A:

A

A

W W'
q

p'



Have p′, q ∈ W ′ t A paired by (uncontrolled) order 2 Whitney disk.

A

A

W W'
q

p'

r s

Need to pair r , s ∈ A t A.



Can pair r , s ∈ A t A by local order 1 Whitney disk V
(‘under’ horizontal sheet).

A

A

W W'
q

p'
r s

VV

Can pair V t A by (uncontrolled) order 2 Whitney disk.


