Intro to Whitney towers III: 2-spheres in 4-manifolds

Rob Schneiderman - (with Peter Teichner)

Lehman College CUNY - (Max-Planck-Institute for Mathematics)

Winterbraids X Feb 2020

Outline of this talk

• Order 0 intersection form, pulling apart pairs of 2-spheres

 Order 1 intersection invariants, pulling apart triples of 2-spheres, stable embedding of m-tuples of 2-spheres

Questions

Surface sheets A and B in $B^4 = B^3 \times I$ with $p = A \oplus B$ and $A \subset B^3 \times *$

Finger move: Before and after

Whitney disk W pairing $p, q \in A \cap B$

Before and after a Whitney move

Whitney disks in 4-manifolds

Have just seen a model Whitney disk W pairing $p, q \in A \cap B$ in B^4 :

Definition:

A Whitney disk pairing $p, q \in A \cap B$ in a 4-manifold X^4 is diffeomorphic to the model near ∂W , and only differs away from ∂W by plumbings in the interior of W.

'Successful' Whitney move: W is 'clean' and 'framed'

Eliminates $p, q \in A \cap B$ without creating new intersections in A or B:

Uses: W is 'clean' = embedded & interior disjoint from all surfaces. Uses: W is framed = W has appropriate disjoint parallels.

Homotopy of surfaces in 4-manifolds

Regular homotopy =

isotopies + finger moves + (clean, framed) Whitney moves.

Arbitrary homotopy =

 $regular\ homotopy\ +\ local\ \textit{cusp\ homotopies}.$

Fundamental question:

"Given $A^2 \hookrightarrow X^4$, is A homotopic to an embedding?"

First obstructions to making components disjointly embedded:

The intersection invariants $\lambda(A_i, A_j) \in \mathbb{Z}[\pi_1 X]$

The self-intersection invariants $\mu(A_i) \in \mathbb{Z}[\pi_1 X]/\text{relations}$

In higher dimensions these obstructions are complete!

$$\lambda(A_i, A_j) := \sum_{p \in A_i \cap A_j} \epsilon_p \cdot g_p \in \mathbb{Z}[\pi_1 X]$$

$$\lambda(A_i, A_j) := \sum_{p \in A_i \cap A_j} \epsilon_p \cdot g_p \in \mathbb{Z}[\pi_1 X]$$

and

$$\mu(A_i) := \sum_{oldsymbol{p} \in A_i \pitchfork A_i} \epsilon_oldsymbol{p} \cdot oldsymbol{g}_oldsymbol{p} \in rac{\mathbb{Z}[\pi_1 X]}{\mathbb{Z}[1] \oplus \langle oldsymbol{g} - oldsymbol{g}^{-1}
angle}.$$

Relations in target $\frac{\mathbb{Z}[\pi_1X]}{\mathbb{Z}[1]\oplus\langle g-g^{-1}\rangle}$ of the self-intersection invariant μ :

- $g g^{-1} = 0$ accounts for choice of orientation on loop determining $g_p \in \pi_1 X$ for self-intersections $p \in A_i \pitchfork A_i$.
- 1 = 0 accounts for cusp homotopies of A_i creating/eliminating self-intersections $p \in A_i \cap A_i$ with trivial $g_p = 1 \in \pi_1 X$.

 λ and μ are invariant under homotopies of A (isotopies, finger moves, Whitney moves, cusp homotopies).

Can express λ and μ as sums of decorated order zero trees:

$$\lambda(A_i, A_j) = \sum_{p \in A_i \oplus A_i} \epsilon_p \cdot i \longrightarrow^{g_p} j \quad \text{for } i \neq j$$

and

$$\mu(A_i) = \sum_{p \in A_i \cap A_i} \epsilon_p \cdot i \xrightarrow{g_p} i$$

modulo relations:

$$i \xrightarrow{g_p} i = i \xrightarrow{g_p^{-1}} i$$
 and $i \xrightarrow{1} i = 0$

So these classical intersection invariants $\lambda_0 := \lambda$ and $\mu_0 := \mu$ can be expressed as a single order 0 'tree-valued' invariant:

$$\tau_0(A) := \sum_{p \in A_i \cap A_i} \epsilon_p \cdot i \longrightarrow^{g_p} j$$

modulo relations:

$$i \longrightarrow j = i \longrightarrow j \quad \text{and} \quad i \longrightarrow i = 0$$

Before generalizing $\tau_0 = 0 \rightsquigarrow \tau_1$, will consider $\lambda_0 = 0 \rightsquigarrow \lambda_1$...

 $\lambda_0(A_1, A_2) = 0 \rightsquigarrow \text{Whitney disks pairing } A_1 \cap A_2$:

 $\lambda_0(A_1,A_2)=0 \leadsto \text{Whitney disks pairing } A_1\cap A_2 \overset{\text{htpy}}{\leadsto} A_1\cap A_2=\emptyset \text{:}$

 $\lambda_0(A_1,A_2)=0 \leadsto \text{Whitney disks pairing } A_1\cap A_2 \overset{\text{htpy}}{\leadsto} A_1\cap A_2=\emptyset \text{:}$

 $\lambda_0(A_1,A_2)=0 \leadsto \text{Whitney disks pairing } A_1\cap A_2 \overset{\text{htpy}}{\leadsto} A_1\cap A_2=\emptyset$:

 $\lambda_0(A_1,A_2)=0 \leadsto \text{Whitney disks pairing } A_1\cap A_2 \overset{\text{htpy}}{\leadsto} A_1\cap A_2=\emptyset$:

Fails for ≥ 3 components: How to eliminate $W_{(1,2)} \cap A_3$?? Will generalize $\lambda_0(A_1, A_2)$ to $\lambda_1(A_1, A_2, A_3)$ counting $W_{(1,2)} \cap A_3...$

 $\lambda_0(A_i,A_j)=0\Leftrightarrow\exists$ Whitney disks $W_{(i,j)}$ pairing all $A_i\cap A_j$.

$$a,b,c\in\pi_1X$$

$$\lambda_1(A_1, A_2, A_3) := \sum \epsilon_p \cdot t_p \in \frac{\langle \pi_1 X \text{-decorated order 1 Y-trees} \rangle}{\mathsf{AS}, \; \mathsf{HOL} \; \mathsf{and} \; \mathsf{INT} \; \mathsf{relations}}$$

sum over $p \in W_{(i,j)} \cap A_k$ for i < j < k (cyclic ordering).

The Antisymmetry and Holonomy relations:

The AS relations make signs well-defined.

The HOL relations account for whisker choices on the Whitney disks.

The INT *Intersection* relations depend on A and $\pi_2 X$ via λ_0 :

over $S: S^2 \to X$ representing generators for $\pi_2(X)$.

The INT relations account for choices of the interiors of Whitney disks.

Theorem:

- 1. $\lambda_1(A_1, A_2, A_3)$ only depends on the homotopy classes of the A_i .
- 2. $\lambda_1(A_1, A_2, A_3)$ vanishes if and only if A_1, A_2, A_3 can be made pairwise disjoint by a homotopy.
- 3. $\lambda_1(A_1, A_2, A_3)$ vanishes if and only if $A_1 \cup A_2 \cup A_3$ admits an order 2 non-repeating Whitney tower: All $W_{(i,j)} \cap A_k$ paired by $W_{((i,j),k)}$ for distinct i, j, k.

Open Problem:

Show that the order 2 invariant $\lambda_2(A_1, A_2, A_3, A_4)$ is well-defined... so far only partial progress.

2-sphere $A: S^2 \hookrightarrow X^4$, $\mu_0(A) = 0 \rightsquigarrow$ framed W_r pairing $A \pitchfork A$.

As before, $p \in W_r \cap A \mapsto \pi_1 X$ -decorated Y-tree t_p .

$$\tau_1(A) := \sum \epsilon_p \cdot t_p \in \frac{\langle \pi_1 X \text{-decorated order 1 Y-trees} \rangle}{\mathsf{AS}, \ \mathsf{HOL}, \ \mathsf{FR} \ \mathsf{and} \ \mathsf{INT} \ \mathsf{relations}}$$
 sum over all $p \in W_r \cap A$.

The new FR *Framing* relations correspond to opposite boundary-twists along different arcs of ∂W :

Theorem:

- 1. $\tau_1(A)$ only depends on the homotopy class of A.
- 2. $\tau_1(A)$ vanishes if and only if A admits an <u>order 2</u> Whitney tower. (Exist framed second order Whitney disks pairing all $W_r \cap A$.)
- 3. $\tau_1(A)$ vanishes if and only if A admits a <u>height 1</u> Whitney tower. (Exist framed W_r pairing $A \cap A$ which have interiors disjoint from A, but may have $W_r \cap W_s \neq \emptyset$.)
- 4. $\tau_1(A)$ vanishes if and only if A is <u>stably homotopic</u> to an embedding. (A is homotopic to an embedding in $X \# S^2 \times S^2$.)

- X simply-connected $\Rightarrow \tau_1(A) \in \mathbb{Z}/2\mathbb{Z}$ or 0.
- Example: $A = 3\mathbb{CP}^1 \hookrightarrow \mathbb{CP}^2 \Rightarrow \tau_1(A) = 1 \neq 0 \in \mathbb{Z}/2\mathbb{Z}$.

- Quotient of target by $\pi_1 X \to 1 \Rightarrow \tau_1(A) \in \mathbb{Z}/2\mathbb{Z}$ or 0.
- $\lambda_0(A, S) = 1$ for some $S \in \pi_2 X \Rightarrow \tau_1(A) \in \mathbb{Z}/2\mathbb{Z}$ or 0.

In these cases $\tau_1(A) = \text{km}(A)$, the *Kervaire–Milnor* invariant.

Non-trivial $\pi_1 X$ edge decorations can make the target of τ_1 large:

 $\pi_1 X$ left-orderable and INT trivial $\Rightarrow \tau_1(A) \in \mathbb{Z}^{\infty} \oplus (\mathbb{Z}/2\mathbb{Z})^{\infty}$.

Can realize values in target of τ_1 in 4-manifolds with non-empty boundary via framed link descriptions.

E.g. Attach a 0-framed 2-handle H to a null-homotopic knot K in ∂ (4-ball \cup 1-handles), where K is created by banding together the Borromean rings with bands running around the 1-handles, and take $A = H \cup$ null-homotopy of K.

Open Problem:

Find an example of $A \hookrightarrow X$, where X is <u>closed</u> and $\tau(A) \neq 0$ after quotient of target which kills the Y-tree with all three edges labelled by the trivial element $1 \in \pi_1 X$.

Even after trivializing all $\pi_1 X$ -decorations, τ_1 sees global information in <u>closed</u> 4-manifolds:

Theorem: (Freedman-Kirby, Kervaire-Milnor, Stong)

Suppose X^4 is closed and $H_2(X; \mathbb{Z}/2\mathbb{Z})$ is spherical. If $A: S^2 \hookrightarrow X$ is characteristic and $\mu_0 A = 0$, then

$$(\pi_1 X \to 1): \quad au_1 A \quad \mapsto \quad \frac{A \cdot A - \mathit{signature}(X)}{8} \quad \mathit{mod} \ 2$$

Question:

What global info is carried by the π_1 -decorations in τ_1A ?

Strategy for proving that $\tau_1(A)$ is a well-defined homotopy invariant:

- 1. Show that $\tau_1(A)$ does not depend on the choice of \mathcal{W} (Whitney disk interiors, boundaries, pairings of self-intersections and preimages of self-intersections) for a fixed immersion $A \hookrightarrow X$.
- 2. Homotopy invariance follows: If A is homotopic to A', then exists A'' which differs from each of A and A' by finger moves which can be made disjoint from all Whitney disks by a small isotopy.

$\tau_1(A) = 0 \rightsquigarrow \text{ order 2 } \mathcal{W} \text{ supported by } A$

Key step in 'algebraic cancellation' \Rightarrow 'geometric cancelation': Will 'transfer' p from W to $p' \in W'$ to pair with q.

Finger move pushing down along W into A:

Finger move pushing along *A*:

Have $p', q \in W' \cap A$ paired by (uncontrolled) order 2 Whitney disk.

Need to pair $r, s \in A \cap A$.

Can pair $r, s \in A \cap A$ by local order 1 Whitney disk V ('under' horizontal sheet).

Can pair intersections in interior of V by (uncontrolled) order 2 Whitney disk.

Open Problem:

Formulate and prove invariance of a next order $\tau_2(A)$.

Hard part: Showing independence of the choice of boundaries of the order 1 Whitney disks.