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Outline of the three talks

1. Surfaces in 4-space,
Whitney towers and their trees,
4-dimensional Jacobi identity

2. Higher-order intersection invariants,
classification of order n twisted Whitney towers in B4,
higher-order Arf invariant conjecture

3. Intersection invariants for 2-spheres in 4-manifolds



Surface sheets A and B in B4 = B3 × I with p = A t B
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A and B in B4 = B3 × I with p = A t B and A ⊂ B3 × ∗
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Two views of A and B in B4 = B3 × I with p = A t B
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Visualize: Hopf link = ∂A ∪ ∂B ⊂ S3 = ∂(B3 × I)



Disjoint surface sheets in B4 = B3 × I



Guiding arc for Finger Move



After Finger Move
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Finger move: Before and after
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Will usually only show the center pictures.



Larger scale view of finger move
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Will usually only show center top and/or center bottom pictures.



Intersections p, q ∈ A t B and a Whitney disk W pairing them
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Whitney move: Before and after
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Whitney disks in 4-manifolds

Have just seen a model Whitney disk W pairing p, q ∈ A t B in B4:

A
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Definition:
A Whitney disk pairing p, q ∈ A t B in a 4-manifold X 4 has a
neighborhood obtained by introducing plumbings into the model.

So a Whitney disk may have interior self-intersections and
intersections with other surfaces.



Successful Whitney move: W is ‘clean’ and ‘framed’

Eliminates p, q ∈ A t B without creating new intersections in A or B:
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W is clean = embedded & interior disjoint from all surfaces.
W is framed = W has appropriate parallels.

Want to ‘measure’ obstructions to successful Whitney moves...



W not clean  Whitney move creates new intersections:

r ∈ W t C :
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W not clean  Whitney move creates new intersections:

r ∈ W t C  r ′, r ′′ ∈ A t C after W -move on A:
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Visualize: The Borromean Rings ∂A ∪ ∂B ∪ ∂C ⊂ ∂B4



Pair ‘higher-order intersections’ with ‘higher-order Whitney disks’...?

Visualize: The Bing-double of the Hopf link in ∂B4.



Definition:
A Whitney tower on A2 # X 4 is defined by:
1. A itself is a Whitney tower.
2. If W is a Whitney tower and W is a Whitney disk pairing

intersections in W , then the union W ∪W is a Whitney tower.

Part of a Whitney tower!

Goal: Study W to get info about A...



Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:



Towards organizing, understanding, controlling Whitney towers...

Splitting Whitney towers by finger-moves:



Splitting Whitney towers by finger-moves:



Splitting Whitney towers by finger-moves:



In a split Whitney tower each Whitney disk contains only one
‘problem’ (un-paired intersection or Whitney disk ∂-arc):



All singularities in split Whitney towers are near trivalent trees:

Ai i i i

Trees ‘bifurcate down’ from unpaired intersections.
Univalent vertices inherit labels from components of the underlying
properly immersed surface A = A1 ∪ A2 ∪ · · · ∪ Am.



Rooted trees

Identify non-associative bracketings of elements of {1, 2, . . . ,m} with
rooted unitrivalent trees (labeled and vertex-oriented):

(i , j) ←→ −−< j
i

and recursively

(I , J) ←→ −−< J
I

Here a singleton is identified with a rooted edge:

(i) = i ←→ −− i



Un-rooted trees = inner products of rooted trees

Gluing two rooted trees I and J together at their roots yields an
un-rooted tree 〈I , J〉 := I −−− J .

Example:
〈(i , k), (j , l)〉 = i

k >−−−< l
j

Example:
〈(I , J),K 〉 = I

J >−− K



Paired intersections −→ rooted trees

Whitney disk W(i ,j) pairing Ai t Aj 7−→ rooted tree −−< j
i
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Paired intersections → rooted trees

Recursively: W(I,J) pairing WI t WJ 7−→ −−< J
I

(I,J)

I

J

W

W

W

root edge of (I , J) contained in interior of W(I,J)



Un-paired intersections → un-rooted trees

p ∈ W(I,J) t WK 7−→ tp = 〈(I , J),K 〉 = I
J >−− K

K
pW

WJ

IW

W(I,J)

Glue together root vertices of (I , J) and K at p ∈ W(I,J) t WK



Why not keep track of edge in tp corresponding to p?
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Because can ‘move’ un-paired intersection to any edge of its tree!
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Close-up view before Whitney move
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Close-up view after Whitney move
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Towards ‘twisted’ trees for twisted Whitney disks...

Recall: Whitney move guided by W uses two parallel copies of W :

W
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The twisting ω(W ) ∈ Z of W is the relative Euler number of a
normal section ∂W over ∂W determined by the sheets:

∂W

pq

A

B
Normal to B

Tangent to A

If ω(W ) = 0, then W is framed.
If ω(W ) 6= 0, then W is twisted and a W -Whitney move will create
intersections between the parallel copies of W ...



Twisted Whitney disks → twisted trees

Define the -tree
J := J −−

by labeling the root of J with the ‘twist’ symbol .

These -trees are called ‘twisted trees’ since they are associated to
twisted Whitney disks:

WJ 7→ J if ω(WJ) 6= 0.

So we sometimes refer to the un-rooted tp as ‘framed trees’...



Definition:
The intersection forest t(W) of a Whitney tower W is the multiset:

t(W) :=
∑

εp · tp +
∑

ω(WJ) · J

where ‘formal sum’ is over all unpaired p and all twisted WJ in W .

εp = ± is usual sign of the unpaired transverse intersection point p
(orientation conventions suppressed).

ω(WJ) ∈ Z is twisting of WJ .

Think of t(W) ⊂ W .



Example: L bounds W = D1 ∪ D2 ∪ D3 ∪W(1,2) with t(W) = 1
2>−− 3

Moving into B4 from left to right, starting with L ⊂ S3 = ∂B4:
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Example: L bounds W = D1 ∪ D2 ∪ D3 ∪W(1,2) with t(W) = 1
2>−− 3

Moving into B4 from left to right, starting with L ⊂ S3 = ∂B4:
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Example: L bounds W = D1 ∪ D2 ∪ D3 ∪W(1,2) with t(W) = 1
2>−− 3

Moving into B4 from left to right, starting with L ⊂ S3 = ∂B4:

W
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D3 D3

D2 D2

L2

L1

L3

D

(1,2)

p = W(1,2) t D3 7→ tp = 〈(1, 2), 3〉 = 1
2>−− 3 = t(W)



Example: Fig-8 knot bounds W = D1 ∪W(1,1) with t(W) = +(1, 1)

Moving into B4, D1 is the track of a null-homotopy of K :

K = ∂D1 ⊂ S3



Example: Fig-8 knot bounds W = D1 ∪W(1,1) with t(W) = +(1, 1)

Moving into B4, D1 is the track of a null-homotopy of K :

W(1,1)

K = ∂D1 ⊂ S3 part of W(1,1) cap off unlink...



Realization

• By iterated Bing-doubling can realize any collection of signed
trees as t(W) for W on 2-disks # B4 bounded by L ⊂ S3.

• Exist restrictions on possible t(W) for W on 2-spheres # B4.
(See next talk...)



No trees = No problems = Embedding!

If W is a Whitney tower on A such that t(W) = ∅,

then A is regularly homotopic to an embedding:

Do the clean framed Whitney moves on all the Whitney disks in W
starting at the ‘top level’...



Higher-order Whitney disks and intersections

Definition:

• The order of a tree is the number of trivalent vertices.

• The order of a Whitney disk or an intersection point is the order
of the corresponding tree.



Order n framed Whitney towers

Definition:
W is an order n framed Whitney tower if

• every framed tree tp in t(W) is of order ≥ n, and

• there are no -trees in t(W).

So in an order n framed W all unpaired intersections have order ≥ n,
and all Whitney disks are framed.



Order n twisted Whitney towers

Definition:
W is an order n twisted Whitney tower if

• every framed tree tp in t(W) is of order ≥ n,

• every twisted -tree in t(W) is of order ≥ n
2 .



Intersection invariants from t(W) and order-raising obstruction theory

Let W be an order n twisted Whitney tower on A# X .

Will define (next talk) abelian groups Tn such that if the order n
twisted intersection invariant τn (W) := [t(W)] ∈ Tn vanishes, then
A is homotopic to A′ supporting an order n + 1 twisted Whitney
tower.



Classification of order n twisted W on ∪iD2
i # B4

Theorem
A link L ⊂ S3 bounds immersed disks supporting an order n + 1
twisted Whitney tower W ⊂ B4 if and only if L has vanishing Milnor
invariants and higher-order Arf invariants through order n.

Idea of proof: Identify the order-raising intersection invariants τn
with Milnor and higher-order Arf invariants. (Next talk.)



General classification of order n Whitney towers?

Open Problem:
Find invariants of order n W on immersed surfaces in 4-manifolds.

Partial results so far. Can formulate similar tree-valued invariants as
for links. Need to understand relations in target groups...

Note: An embedded surface is a Whitney tower of order n for all n.
So related to the (difficult!) embedding problem.



Other complexity gradings: Non-repeating order n Whitney towers

W is an order n non-repeating Whitney tower if all tp ∈ t(W) having
distinctly-labeled vertices are of order ≥ n.

Non-repeating Whitney towers characterize being able to ‘pull apart’
components:
Theorem:

A = ∪m
i=1Ai # X bounds an order m − 1 non-repeating W

if and only if

A is homotopic to A′ = ∪m
i=1A′

i with A′
i ∩ A′

j = ∅ for all i 6= j .



Other complexity gradings: Symmetric Whitney towers

A Whitney tower W is symmetric if the interiors of all Whitney disks
in W only intersect Whitney disks of the same order.

A symmetric Whitney tower of order (2n − 2) has height n.

Theorem: (Cochran–Teichner)
If L ⊂ S3 bounds W ⊂ B4 of height n + 2, then L is n-solvable
in the sense of Cochran–Orr–Teichner.

Open Problem:
Formulate invariants corresponding to a ‘height-raising’ obstruction
theory for symmetric Whitney towers.



Geometric Jacobi Identity in 4-dimensions

There exist four 2-spheres in 4-space supporting W with intersection
forest t(W) equal to:

4 4 43 3 3

1 1 12 2 2

Conclude: The local ‘IHX relation’ of finite type theory is needed in
the target of any invariant represented by t(W):

I I IJ J J

K K KL L L

=   0



Geometric Jacobi Identity in 4-dimensions

Start with disjoint embeddings Ai : S2 → B4, i = 1, 2, 3, 4.
Then do finger moves of A1,A2,A3 into A4:

A3 A2

A1

W(4,1)

W(3,4) W(2,4)

A4

Whitney disks on the right are inverse to the finger moves.



Geometric Jacobi Identity in 4-dimensions

Will construct new Whitney disks with these boundaries:

A4

A3 A2

A1



First change collar of W(3,4); creating {q, r} = A2 t W(3,4):
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Then add W(2,(3,4)) pairing {q, r} = A2 t W(3,4):
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W(3,4) and W(2,(3,4)) are contained in the ‘present’ slice of B4 = B3× I

Creates p = A1 ∩W(2,(3,4)).



p = A1 ∩W(2,(3,4)) 7→ tp = 3
4>−<2

1:
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Exercise: Construct other two trees of the IHX relation analogously
using past and future...

W
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HINT: Here in ‘present’ red and blue Whitney disks have clean collars
along horizontal A4-sheet.

(See Jacobi identities in Low-dimensional Topology, Compositio
Mathematica vol. 143, no. 3 May 2007, or Winterbraids X notes.)


