Intro to Whitney towers II: Twisted Whitney towers in the 4-ball

Rob Schneiderman – (with Jim Conant & Peter Teichner)

Lehman College CUNY - (AoPS Academy & MPIM)

Winterbraids X Feb 2020

Outline of this talk

Twisted Whitney towers and their trees

- Boundary twists and interior twists on Whitney disks
- Intersection invariants for order *n* twisted Whitney towers
- Classification of order n twisted Whitney towers in B⁴
- The Higher-order Arf invariant Conjecture

Preview

Key case of the <u>Higher-order Arf invariant Conjecture</u> in the setting of 'finite type' invariants:

The following sum of trees represents a non-trivial finite type concordance invariant of 2-component links (first-non-vanishing, $\mathbb{Z}/2\mathbb{Z}$ -coefficients):

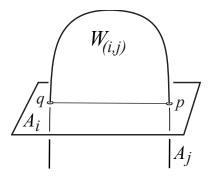


This invariant is finite type degree 6 = order 5.

J-B. Meilhan and A. Yasuhara have characterized all finite type concordance invariants of string links in degrees ≤ 5 .

Surface sheets A_i and A_j in $B^4 = B^3 \times I$.

Whitney disk $W_{(i,j)}$ pairing $\{q,p\} = A_i \pitchfork A_j$:



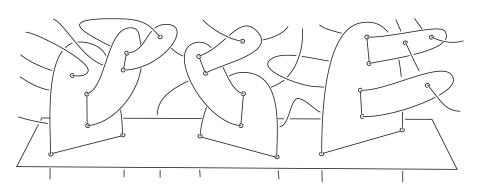
 $A_i \cup W_{(i,j)} \subset B^3 \times$ 'present', while A_j extends into 'past and future'.

In general, a Whitney disk may have transverse interior self-intersections, and intersections with other surfaces.

Definition:

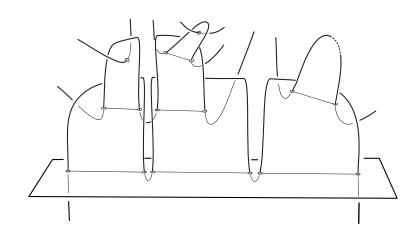
A Whitney tower on $A^2 \hookrightarrow X^4$ is defined by:

- 1. A itself is a Whitney tower.
- 2. If $\mathcal W$ is a Whitney tower and W is a Whitney disk pairing intersections in $\mathcal W$, then the union $\mathcal W \cup W$ is a Whitney tower.



Goal: Study W to get info about A...

So a Whitney tower $W \subset X^4$ on a properly immersed surface $A^2 \hookrightarrow X^4$ is the union of $A = \bigcup_i A_i$ and 'layers' of Whitney disks.



The *intersection forest* multiset t(W) of a Whitney tower W

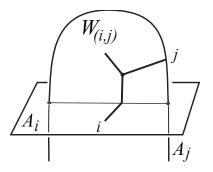
$$\mathcal{W} \mapsto t(\mathcal{W}) = \sum \; \epsilon_{p} \cdot t_{p} \; + \sum \; \omega(W_{J}) \cdot J^{\circ}$$



'framed tree' $t_p \leftarrow p$ unpaired intersection with sign $\epsilon_p = \pm 1$, 'twisted tree' $J^{\infty} := J - \infty \leftarrow W_J$ with twisting $\omega(W_J) \neq 0 \in \mathbb{Z}$.

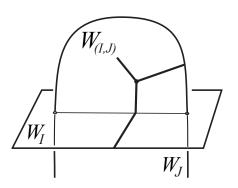
Paired intersections \longrightarrow rooted trees

$$W_{(i,j)}$$
 pairing $A_i \pitchfork A_j \longmapsto \text{rooted tree} \prec_i^j = (i,j)$



Paired intersections \rightarrow rooted trees

Recursively: $W_{(I,J)}$ pairing $W_I \cap W_J \longrightarrow - < I = (I,J)$

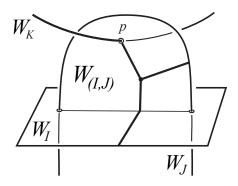


Rooted trees I, $J = \text{non-associative bracketings from } \{1, 2, 3, \dots, m\}$ Notation convention: Singleton subscript W_i denotes component A_i .

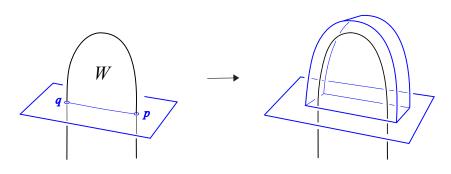
Un-paired intersections \rightarrow un-rooted trees

Inner product 'fuses' rooted edges into single edge:

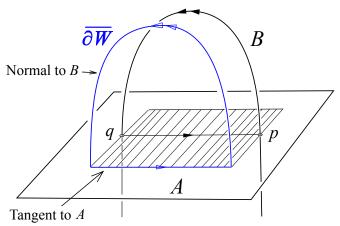
$$p \in W_{(I,J)} \cap W_k \longmapsto t_p = \langle (I,J), K \rangle = {}^I_J > - \kappa$$



Recall: Whitney move uses two parallel copies of W:



The twisting $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:



$$W_J \quad \mapsto \quad J^{\infty} := J - - \infty \quad \text{ if } \omega(W_J) \neq 0.$$

Boundary twist on W changes $\omega(W)$ by ± 1 , creates intersection p between W and a sheet paired by W

'Side view' near a point in ∂W :

boundary twist of
$$W$$

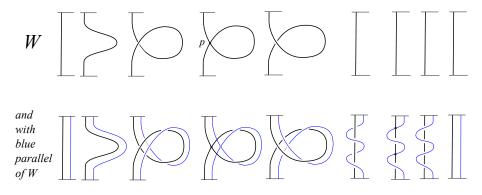
with blue parallel of W that intersects W :

Can create any clean $W_{(I,J)}$ by finger moves, then boundary twist into J-sheet changes t(W) by:

$$I \longrightarrow I \longrightarrow I \longrightarrow S$$

\pm -interior twist on W changes $\omega(W)$ by ∓ 2 and creates $p \in W \cap W$

After the interior twist, near an arc in W that runs between the two sheets:



Can create any clean W_J by finger moves, then \pm -interior twist changes t(W) by:

$$\pm \langle J, J \rangle \mp 2 \cdot J^{\circ}$$

- Ultimate goal: For $A \subset \mathcal{W} \subset X^4$, want to define invariants from $t(\mathcal{W})$ that only depend on the homotopy class of A, and give obstructions to A being homotopic to an embedding
- obstructions to A being homotopic to an embedding.
 This talk describes the attainment of this goal for Whitney

towers $\mathcal{W} \subset B^4$ on collections A of immersed disks bounded by

a link $L \subset S^3 = \partial B^4$.

Obstruction theory for links bounding twisted Whitney towers

- \mathcal{W} is an order n twisted Whitney tower if $t(\mathcal{W})$ contains only framed trees of order $\geq n$ and twisted trees of order $\geq n/2$, where <u>order</u> := number of trivalent vertices.
- Will define abelian groups \mathcal{T}_n^{∞} and intersection invariants $\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$ such that: L bounds an order n twisted \mathcal{W} with $\tau_n^{\infty}(L) := \tau_n^{\infty}(\mathcal{W}) = 0$ if and only if L bounds an order n+1 twisted Whitney tower.
- $\tau_n^{\infty}(L) \longleftrightarrow$ Milnor invariants and higher-order Arf invariants

Towards intersection invariants $\tau_n^{\infty}(\mathcal{W}) \in \mathcal{T}_n^{\infty}$ for order n twisted Whitney towers $\mathcal{W} \subset B^4$ bounded by $L \subset S^3$

 $\mathcal{T}_n :=$ free abelian group on order n framed trees modulo local antisymmetry (AS) and Jacobi (IHX) relations:

AS relations \Rightarrow signs of the framed trees in $t(\mathcal{W})$ only depend on the orientation of $L = \bigcup_i \partial D^2 \subset \bigcup_i D^2 \overset{A_i}{\hookrightarrow} B^4$ after mapping to \mathcal{T}_n .

Talk $I\Rightarrow$ any $t(\mathcal{W})$ can be changed by creating IHX trees.

The odd order target groups $\mathcal{T}_{2j-1}^{\infty}$

Obstructions to raising twisted order from 2j - 1 to 2j:

Definition:

 $\mathcal{T}^{\circ}_{2j-1}$ is the quotient of \mathcal{T}_{2j-1} by *boundary-twist relations:*

$$i - <_J^J = 0$$

where J ranges over all order j-1 subtrees.

Since via boundary-twisting:

$$i - <_J^J \mapsto i - <_{\infty}^J + \text{trees of order } \ge 2j$$

and the trees on the right are allowed in order 2j twisted W.

Obstructions to raising twisted order from 2j to 2j + 1:

Definition:

 $\mathcal{T}_{2j}^{\infty}$ is the quotient of the free abelian group on framed trees of order 2j and $\underline{\infty}$ -trees of order j by the following relations:

- 1. AS and IHX relations on order 2j framed trees
- 2. symmetry relations: $(-J)^{\infty} = J^{\infty}$
- 3. twisted IHX relations: $I^{\infty} = H^{\infty} + X^{\infty} \langle H, X \rangle$
- 4. *interior-twist* relations: $2 \cdot J^{\infty} = \langle J, J \rangle$

Remark: $\infty - < \frac{J}{J}$ generate the torsion subgroup of $\mathcal{T}^{\infty} := \oplus \mathcal{T}_{n}^{\infty}$.

Definition:

For an order n twisted Whitney tower \mathcal{W} define

$$\tau_n^{\infty}(\mathcal{W}) := [t(\mathcal{W})] \in \mathcal{T}_n^{\infty}$$

Theorem:

If $L \subset S^3$ bounds an order n twisted $\mathcal{W} \subset B^4$ with $\tau_n^{\infty}(\mathcal{W}) = 0 \in \mathcal{T}_n^{\infty}$, then L bounds an order n+1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn 'algebraic cancellation' in \mathcal{T}_n° into 'geometric cancellation' by new layer of Whitney disks.

For $L = L_1 \cup L_2 \cup \cdots \cup L_m \subset S^3$ and $G = \pi_1(S^3 \setminus L)$:

$$[L_i] \in G_{n+1} \ (n+1)$$
th lower central subroup $\implies \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}$

 $\mathcal{L} = \bigoplus_n \mathcal{L}_n$ the free \mathbb{Z} -Lie algebra on $\{X_1, X_2, \dots, X_m\}$.

Define the *order n Milnor invariant* $\mu_n(L)$:

$$\mu_n(L) := \sum_{i=1}^m X_i \otimes \ell_i \in \mathcal{L}_1 \otimes \mathcal{L}_{n+1}$$

where ℓ_i is the image in \mathcal{L}_{n+1} of the *i*-th longitude $[L_i] \in \frac{G_{n+1}}{G_{n+2}}$.

Turns out: $\mu_n(L) \in \mathcal{D}_n := \ker\{\mathcal{L}_1 \otimes \mathcal{L}_{n+1} \xrightarrow{\mathsf{bracket}} \mathcal{L}_{n+2}\}.$

Summation maps η_n 'connect' $\tau_n^{\infty}(\mathcal{W})$ and $\mu_n(L)$

Definition:

The map $\eta_n:\mathcal{T}_n^\infty\to\mathcal{L}_1\otimes\mathcal{L}_{n+1}$ is defined on generators by

$$\eta_n(t) := \sum_{v \in t} X_{\mathsf{label}(v)} \otimes \mathsf{Bracket}_v(t) \qquad \quad \eta_n(J^{\circ\circ}) := \frac{1}{2} \, \eta_n(\langle J, J \rangle)$$

Here J is a rooted tree of order j for n = 2j.

$$\eta_1(1 - \langle \frac{3}{2}) = X_1 \otimes - \langle \frac{3}{2} + X_2 \otimes 1 - \langle \frac{3}{2} + X_3 \otimes 1 - \langle \frac{3}{2} \rangle$$

$$\eta_2(\omega - \langle \frac{2}{1} \rangle) = \frac{1}{2} \eta_2(\frac{1}{2} - \langle \frac{2}{1} \rangle)$$

The summation maps η_n 'connect' $\tau_n^{\infty}(\mathcal{W})$ and $\mu_n(L)$

The image of η_n is equal to the bracket kernel $\mathcal{D}_n < \mathcal{L}_1 \otimes \mathcal{L}_{n+1}$.

Theorem:

If L bounds a twisted Whitney tower $\mathcal W$ of order n, then the order q Milnor invariants $\mu_q(L)$ vanish for q < n, and

$$\mu_n(L) = \eta_n \circ \tau_n^{\infty}(\mathcal{W}) \in \mathcal{D}_n$$

Proof idea: *Gropes* in $B^4 \setminus \mathcal{W}$ display longitudes of L as iterated commutators exactly according to $\eta_n \circ \tau_n^{\infty}(\mathcal{W})$...

The order *n* twisted Whitney tower filtration on links

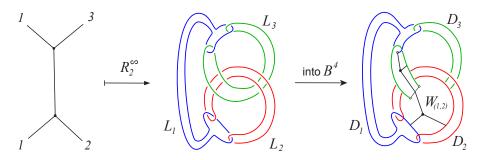
$$\mathsf{W}_n^{\infty} := \frac{\{\mathsf{links in } S^3 \mathsf{ bounding order } n \mathsf{ twisted Whitney towers in } B^4\}}{\mathsf{order } n+1 \mathsf{ twisted Whitney tower concordance}}$$

Obstruction theory $\Longrightarrow \mathsf{W}_n^{\infty}$ is a finitely generated abelian group

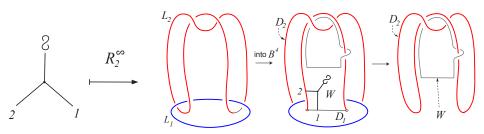
Via Cochran's Bing-doubling techniques get epimorphisms

$$R_n^{\infty}:\mathcal{T}_n^{\infty} \to W_n^{\infty}$$

which send $g \in \mathcal{T}_n^{\infty}$ to the equivalence class of links bounding an order n twisted Whitney tower \mathcal{W} with $\tau_n^{\infty}(\mathcal{W}) = g$.

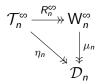


L bounds
$$\mathcal{W}$$
 with $\tau_2^{\infty}(\mathcal{W}) = \frac{1}{2} > -- < \frac{1}{3}$



L bounds
$$\mathcal{W}$$
 with $\tau_2^{\infty}(\mathcal{W}) = \frac{2}{1} > --- \infty$

Have commutative triangle diagram of epimorphisms:



Theorem:

The maps $\eta_n: \mathcal{T}_n^{\infty} \to \mathcal{D}_n$ are isomorphisms for $n \equiv 0, 1, 3 \mod 4$.

Corollary:

For $n \equiv 0, 1, 3 \mod 4$:

- $\mu_n \colon W_n^{\infty} \to \mathcal{D}_n$ and $R_n^{\infty} \colon \mathcal{T}_n^{\infty} \to W_n^{\infty}$ are isomorphisms.
- $\tau_n^{\infty}(\mathcal{W}) \in \mathcal{T}_n^{\infty}$ only depends on $L = \partial \mathcal{W}$.

 \mathcal{D}_n is a free abelian group of known rank for all n, so have a complete computation of $W_n^{\infty} \cong \mathcal{D}_n \cong \mathcal{T}_n^{\infty}$ in three quarters of the cases.

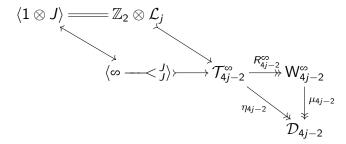
Towards understanding the remaining cases $n \equiv 2 \mod 4$:

Proposition:

The map $1 \otimes J \mapsto \infty \longrightarrow \int_J^\infty \mathcal{T}_{4j-2}^\infty$ induces an isomorphism:

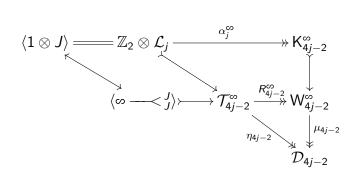
$$\mathbb{Z}_2 \otimes \mathcal{L}_j \cong \mathsf{Ker}(\eta_{4j-2}: \mathcal{T}^{\circ}_{4j-2} o \mathcal{D}_{4j-2})$$

Extending the algebraic side of the triangle:



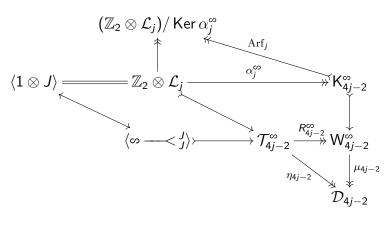
Towards defining higher-order Arf invariants

 $R_{4j-2}^{\infty} \text{ induces } \alpha_j^{\infty}: \mathbb{Z}_2 \otimes \mathcal{L}_j \twoheadrightarrow \mathsf{K}_{4j-2}^{\infty}:= \ker\{\mu_{4j-2}: \mathsf{W}_{4j-2}^{\infty} \twoheadrightarrow \mathcal{D}_{4j-2}\}$



Higher-order Arf invariant diagram

Also extending the topological side of the triangle:



$$\operatorname{Arf}_j := \mathsf{K}^{\infty}_{4j-2} \to (\mathbb{Z}_2 \otimes \mathsf{L}_j) / \operatorname{Ker} \alpha_j^{\infty}$$

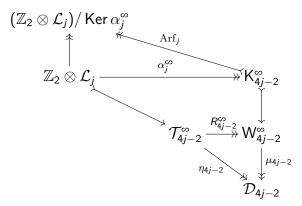
Higher-order Arf invariants and computation of W_n^{∞} for all n

Corollary:

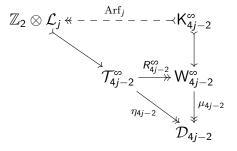
The groups W_n^{∞} are classified by Milnor invariants μ_n and, in addition, higher-order Arf invariants Arf_i for n=4j-2.

In particular, a link bounds an order n+1 twisted $\mathcal W$ if and only if its Milnor invariants and higher-order Arf invariants vanish up to order n.

Higher-order Arf invariant diagram



Conjectured higher-order Arf invariant diagram



Conjecture: (Higher-order Arf invariant conjecture)

 $\operatorname{Arf}_j: \mathsf{K}^{\circ}_{4j-2} o \mathbb{Z}_2 \otimes \mathsf{L}_j$ are isomorphisms for all j.

This conjecture would imply $W_n^{\infty} \xrightarrow{\tau_n^{\infty}} \mathcal{T}_n^{\infty}$ is an isomorphism for all n.

- ${\rm Arf_1}$ corresponds to classical Arf invariants of the link components. Are the ${\rm Arf}_j$ for j>1 also determined by finite type isotopy invariants?
- The links $R_{4j-2}^{\infty}(\varnothing < J)$ realizing the image of Arf_j are known not to be *slice* by work of J.C. Cha.
- Fundamental first open test case: Does the Bing double of the Figure-8 knot $R_6^{\infty}(\infty <_{(1,2)}^{(1,2)}) \in W_6^{\infty}$ bound an order 7 twisted Whitney tower?
- If the Bing double of the Figure-8 knot does bound an order 7 twisted Whitney tower, then Arf_j are trivial for all $j \geq 2$.

Re-formulations of the higher-order Arf invariant Conjecture

• There does not exist $A: S^2 \cup S^2 \hookrightarrow B^4$ supporting $\mathcal W$ with

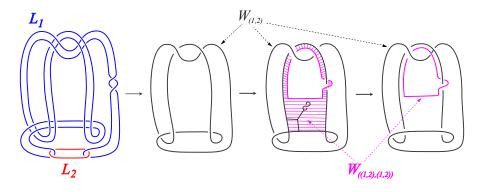
$$t(\mathcal{W}) = \boldsymbol{\circ} - <^{(1,2)}_{(1,2)}$$

(possibly + higher-order trees).

- The Bing double of any knot with non-trivial classical Arf invariant does not bound an order 6 framed Whitney tower.
- There does not exist $A: S^2 \cup S^2 \hookrightarrow B^4$ supporting \mathcal{W} with $t(\mathcal{W}) = \langle ((((((1,2),1),2),1),2),1) \rangle + \langle ((((((1,2),2),1),2),1),2) \rangle$ (possibly + higher-order trees).

Bing(Fig8) bounds W with $t(W) = ((1,2),(1,2))^{\infty}$

$$\mathcal{W} = D_1 \cup D_2 \cup W_{(1,2)} \cup W_{(1,2),(1,2))}$$



More questions/problems

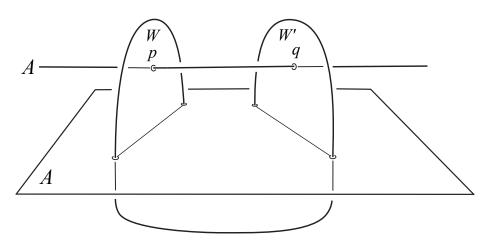
• Equivariant Milnor and Arf invariant correspondence with π_1 -decorated tree-valued intersection invariants for order n Whitney towers bounded by links in non-simply-connected 3-manifolds?

• Use t(W) to efficiently formulate indeterminacies in Milnor invariants?

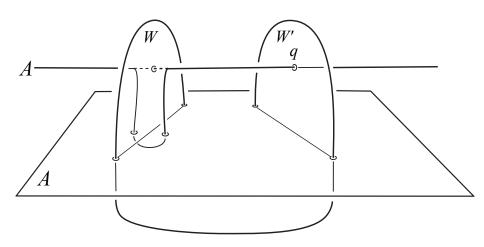
 Higher-order Arf invariants for 2-spheres supporting Whitney towers in 4-manifolds?

From proof of 'order raising' obstruction theory

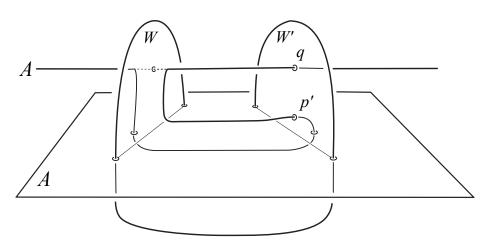
Key step in 'algebraic cancellation' \Rightarrow 'geometric cancelation': Will 'transfer' p from W to $p' \in W'$ to pair with q.



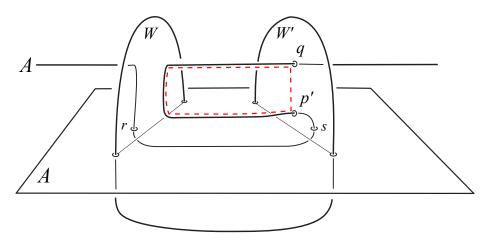
Finger move pushing down along W into A:



Finger move pushing along *A*:

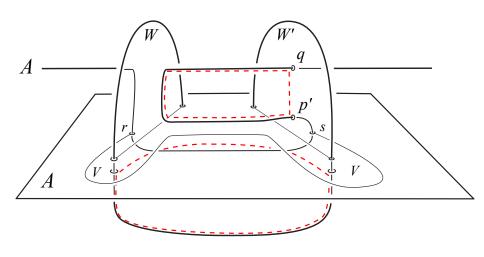


Have $p', q \in W' \cap A$ paired by (uncontrolled) order 2 Whitney disk.



Need to pair $r, s \in A \cap A$.

Can pair $r, s \in A \cap A$ by local order 1 Whitney disk V ('under' horizontal sheet).



Can pair $V \cap A$ by (uncontrolled) order 2 Whitney disk.