Ordered groups, knots, braids and hyperbolic 3-manifolds Minicourse in Caen

Dale Rolfsen, UBC

February and March 2017

Lecture 1: Introduction to ordered groups Lecture 2: Ordering knot groups; Fibred knots and surgery Lecture 3: Braids, $Aut(F_n)$ and minimal volume hyperbolic 3-manifolds A group is left-ordered if there is a strict total ordering < of its elements such that g < h implies fg < fh. Left-orderable groups are also right-orderable, but by a possibly different ordering. If a group has a strict total ordering < which is both right- and left-invariant, we call it bi-ordered.

Examples

- \mathbb{Z}^n is bi-orderable.
- Free groups are bi-orderable.
- Braid groups are left-orderable (Dehornoy) but not bi-orderable
- Pure braid groups are bi-orderable.
- Surface groups are bi-orderable, except the Klein bottle group

$$\langle a, b | a^2 = b^2 \rangle$$

which is only left-orderable, and the projective plane's group $\mathbb{Z}/2\mathbb{Z}$ which is not even left-orderable.

• Homeo⁺(\mathbb{R}) is left-orderable.

This can be seen by well-ordering $\mathbb{Q} = \{x_1, x_2, ...\}$ and comparing functions $f, g : \mathbb{R} \to \mathbb{R}$ by declaring $f \prec g$ iff $f(x_i) < g(x_i)$ at the first *i* at which $f(x_i)$ and $g(x_i)$ differ. Moreover, if *G* is a countable left-orderable group, then *G* is isomorphic with a subgroup of $Homeo^+(\mathbb{R})$.

Properties of orderable groups

• Left-ordered groups *G* are torsion-free, that is there are no elements of finite order.

To see this, suppose $g \in G$ and $g \neq 1$. If g > 1, then $g^2 > g > 1$, etc. – all powers of g are greater than 1. Similarly, if g < 1, no power of g can be the identity.

• Bi-ordered groups have unique roots: $g^n = h^n$, $n > 0 \implies g = h$ In a bi-ordered group, one can multiply inequalities: g < h and g' < g' imply gg' < hh'. So if g < h, we conclude $g^2 < h^2$, then $g^3 < h^3$, etc. That is if g and h are unequal, then their powers g^n and h^n are also unequal.

Properties of orderable groups

In a bi-ordered group, if g commutes with hⁿ, n ≠ 0, then g commutes with h.
Exercise 1: Prove this (hint: compare g with h⁻¹gh).

Recall that the group ring RG of a group G, with coefficients in a ring R, consists of formal linear combinations of group elements with R coefficients. A typical element is of the form

$$\sum_{i=1}^m r_i g_i \quad r_i \in R, g_i \in G.$$

Multiplication is defined as for polynomials:

$$(\sum_{i=1}^{m} r_i g_i)(\sum_{j=1}^{n} s_j h_j) = \sum_{i,j} r_i s_j g_i h_j$$

Note that if a group G has a torsion element, say $g \in G$ has order 5, then we have an equation:

$$(1+g+g^2+g^3+g^4)(1-g)=1-g^5=0.$$

The two terms on the left are nonzero in $\mathbb{Z}G$, yet their product equals zero. Such elements are called zero divisors.

Our example illustrates that if G contains elements of finite order, then $\mathbb{Z}G$ has zero divisors.

Conjecture: If the ring R has no zero divisors and G is torsion-free, then RG has no zero divisors.

This is unsolved, even for the case $R = \mathbb{Z}$

Properties of orderable groups

• Left-orderable groups satisfy the zero-divisor conjecture, that is, if *R* has no zero divisors and *G* is left-orderable, then *RG* has no zero divisors.

Proof: Consider a product $(\sum_{i=1}^{m} r_i g_i)(\sum_{j=1}^{n} s_j h_j) = \sum_{i,j} r_i s_j g_i h_j$, where we assume that the r_i and s_j are all nonzero, the g_i are distinct and the h_j are written in strictly ascending order, with respect to a given left-ordering of G.

At least one of the group elements $g_i h_j$ on the right-hand side is minimal in the left-ordering. If j > 1 we have, by left-invariance, that $g_i h_1 < g_i h_j$ and $g_i h_j$ is not minimal. Therefore we must have j = 1. On the other hand, since we are in a group and the g_i are distinct, we have that $g_i h_1 \neq g_k h_1$ for any $k \neq i$. We have established that there is exactly one minimal term on the r.h.s. It follows that it survives any cancellation, and so the r.h.s. cannot be zero (because $r_i s_1 \neq 0$). Thus *RG* has no zero divisors.

Dale Rolfsen, UBC

Exercise 2: Show that if R and G are as above, then the only units (invertible elements) of RG are "monomials" of the form rg, where r is an invertible element of R.

- (LaGrange, Rhemtulla) If G is left-orderable and H is any group, then $\mathbb{Z}G \cong \mathbb{Z}H \implies G \cong H$.
- If G is bi-ordered, then $\mathbb{Z}G$ embeds in a division ring.

Properties of orderable groups

If (G, <) is a left-ordered group, then the positive cone

$$P = P_{<} = \{g \in G | 1 < g\}$$

is a semigroup $(P \cdot P \subset P)$ and G is partitioned as

$$G = P \sqcup P^{-1} \sqcup \{1\}$$

Conversely, if a group G has a sub-semigroup with the above properties, then G can be left-ordered by the rule

$$g < h \Leftrightarrow g^{-1}h \in P$$

Exercise 3: Verify that this recipe defines a left order of *G*. The left-ordering is a bi-ordering iff its positive cone is normal:

$$g^{-1}Pg \subset P \quad \forall g \in G$$

We begin with a reminder of the Tychonoff topology of a cartesian product of spaces. It is the smallest topology such that the projection functions are continuous.

If X is any set, the power set $\mathcal{P}(X)$ can be identified with the set $2^X = \{0,1\}^X$ of all functions $f : X \to \{0,1\}$ via the correspondence of subsets with their characteristic functions:

$$Y \subset X \leftrightarrow f_Y$$

where $f_Y(x) = 1 \iff x \in Y$.

Giving $\{0,1\}$ the discrete topology, $\{0,1\}^X$ is a special case of a product space and can be given the Tychonoff topology.

Topology on the power set of a set

This then defines a topology on $\mathcal{P}(X) \cong \{0,1\}^X$. Typical open sets in $\mathcal{P}(X)$ are $U_x = \{Y \subset X | x \in Y\} \cong \{f : X \to \{0,1\} | f(x) = 1\}$ and $U_x^c = \{Y \subset X | x \notin Y\}$. Finite intersections of such sets form a basis for the "Tychonoff" topology

of $\mathcal{P}(X)$

By a theorem of Tychonoff, it is compact.

It is also totally disconnected: if Y_1 and Y_2 are distinct elements of $\mathcal{P}(X)$, choose an x which is in Y_1 (say) but not in Y_2 . Then the sets U_x and U_x^c form a separation of $\mathcal{P}(X)$ with $Y_1 \in U_x$ and $Y_2 \in U_x^c$.

If X is countably infinite, $\mathcal{P}(X)$ is homeomorphic with the Cantor set.

The set LO(G) of left-orderings < of a group G can therefore be identified with the set of subsets $P \subset G$ (i. e. elements of $\mathcal{P}(G)$) satisfying (1) $P \cdot P \subset P$ and (2) $G = P \sqcup P^{-1} \sqcup \{1\}$

Proposition

LO(G) is a closed subset of $\mathcal{P}(G)$.

Proof: The set of $P \subset G$ which do not satisfy (1) is exactly the union over all $g, h \in G$ of the sets $U_g \cap U_h \cap U_{gh}^c$, and is therefore open. Similarly, one checks that (2) is a closed condition.

Corollary

LO(G) is compact and totally disconnected.

Recall that we have been identifying left-orderings with their positive cones. A basic neighborhood of a left-ordering < of a group G can be defined by considering a finite number of inequalities $g_i < h_i$ – the neighborhood of < is all orderings \prec for which those inequalities remain true: $g_i \prec h_i$.

One can also check that the set of all bi-orders of a group G is closed in LO(G), hence also forms a compact, totally disconnected space.... Possibly empty! A basic question regarding a group G is whether it is left-orderable, or in other words, is LO(G) nonempty?

If G is nontrivial, a necessary condition for left-orderability is that G be torsion-free. But that is by no means sufficient.

Suppose G is finitely-generated with generating set S, and let $B_n(G)$ be the *n*-ball in the Cayley graph of G with respect to the set S. This is the set of all elements of G which can be written as a product of *n* or fewer elements of S and their inverses.

Criteria for orderability

Call a subset
$$Q$$
 of $B_n(G)$ a pre-order if
(1') $(Q \cdot Q) \cap B_n(G) \subset Q$ and
(2') $B_n(G) = Q \sqcup Q^{-1} \sqcup \{1\}$

Proposition

If G is left-orderable, then every $B_n(G)$ has a pre-order.

This is the basis for a finite algorithm to test for orderability of a f. g. group: see N. Dunfield's website. Perhaps surprisingly, the converse also is true.

Theorem

If every $B_n(G)$ has a pre-order, then G is left-orderable.

Proof: Note that the restriction to $B_n(G)$ of a pre-order for $B_{n+1}(G)$ is a pre-order for $B_n(G)$. Let $Q_n = \{R \subset G | R \cap B_n(G) \text{ is a pre-order for } B_n(G)\}$. One checks that Q_n is closed in $\mathcal{P}(G)$. In a compact space, the intersection of a nested sequence of nonempty closed sets is nonempty. It is easy to check that if a set $P \subset G$ is in every $B_n(G)$, then P satisfies (1) and (2).

Thus we have
$$LO(G) = \bigcap_{n=1}^{\infty} \mathcal{Q}_n \neq \emptyset$$
.

The assumption of being finitely-generated is not really essential.

Theorem

A group is left-orderable if and only each of its finitely-generated subgroups is left-orderable.

Proof: The forward implication is obvious. For the reverse implication, consider any finite subset F of the given group G and let $\langle F \rangle$ denote the subgroup of G generated by F. Define

 $\mathcal{Q}(F) := \{ Q \subset G | Q \cap \langle F \rangle \text{ is a positive cone for } \langle F \rangle \}$

For each finite $F \subset G$, $\mathcal{Q}(F)$ is a closed nonempty subset of $\mathcal{P}(G)$.

The family of all Q(F), for finite $F \subset G$, is a collection of closed sets which has the finite intersection property, because

$$\mathcal{Q}(F_1 \cup F_2 \cup \cdots \cup F_n) \subset \mathcal{Q}(F_1) \cap \mathcal{Q}(F_2) \cap \cdots \cap \mathcal{Q}(F_n).$$

By compactness, the entire family must have a nonempty intersection:

$$LO(G) = \bigcap_{F \subset G \text{finite}} \mathcal{Q}(F) \neq \emptyset.$$

Corollary

An abelian group is bi-orderable if and only if it is torsion-free.

Proof: Bi-orderable groups are torsion-free. To see the other direction, it is enough to observe that a finitely-generated torsion-free abelian group is isomorphic with \mathbb{Z}^n for some finite n.

Theorem

A group G can be left-ordered if and only if for every finite subset $\{x_1, \ldots, x_n\}$ of $G \setminus \{1\}$, there exist $\epsilon_i = \pm 1$ such that $1 \notin S(x_1^{\epsilon_1}, \ldots, x_n^{\epsilon_n})$.

One direction is clear, for if < is a left-ordering of G, just choose ϵ_i so that $x_i^{\epsilon_1}$ is greater than the identity. For the converse, we may assume that G is finitely generated, and we need only show that each k-ball $B_k(G)$, with respect to a fixed finite generating set, has a pre-order. Now consider $\{x_1, \ldots, x_n\}$ to be the entire set $B_k(G) \setminus \{1\}$, and choose $\epsilon_i = \pm 1$ such that $1 \notin S(x_1^{\epsilon_1}, \ldots, x_n^{\epsilon_n})$. We can check that the set $\{x_1^{\epsilon_1}, \ldots, x_n^{\epsilon_n}\}$ is a pre-order of $B_k(G)$, completing the proof.

Theorem (Burns-Hale)

A group G is left-orderable if and only if for every finitely-generated subgroup $H \neq \{1\}$ of G, there exists a left-orderable group L and a nontrivial homomorphism $H \rightarrow L$.

Proof: One direction is obvious. To prove the other direction, assume the subgroup condition. The result will follow if one can show: Claim: For every finite subset $\{x_1, \ldots, x_n\}$ of $G \setminus \{1\}$, there exist $\epsilon_i = \pm 1$ such that $1 \notin S(x_1^{\epsilon_1}, \ldots, x_n^{\epsilon_n})$. We will establish this claim by induction on n.

Criteria for orderability

It is certainly true for n = 1, for $S(x_1)$ cannot contain the identity unles x_1 has finite order, which is impossible since the cyclic subgroup $\langle x_1 \rangle$ must map nontrivially to a left-orderable (hence torsion-free) group. Next assume the claim true for all finite subsets of $G \setminus \{1\}$ having fewer than n elements, and consider $\{x_1, \ldots, x_n\} \subset G \setminus \{1\}$. By hypothesis, there is a nontrivial homomorphism

$$h: \langle x_1, \ldots, x_n \rangle \to L$$

where (L, \prec) is a left-ordered group. Not all the x_i are in the kernel; we may assume they are numbered so that

$$h(x_i) \begin{cases} \neq 1 \text{ if } i = 1, \dots, r, \\ = 1 \text{ if } r < i \leq n. \end{cases}$$

Now choose $\epsilon_1, \ldots, \epsilon_r$ so that $1 \prec h(x_i^{\epsilon_i})$ in L for $i = 1, \ldots, r$. For i > r, the induction hypothesis allows us to choose $\epsilon_i = \pm 1$ so that $1 \notin S(x_{r+1}^{\epsilon_{r+1}}, \ldots, x_n^{\epsilon_n})$. We now check that $1 \notin S(x_1^{\epsilon_1}, \ldots, x_n^{\epsilon_n})$ by contradiction. Suppose that 1 *is* a product of some of the $x_i^{\epsilon_i}$. If all the *i* are greater than *r*, this is impossible, as $1 \notin S(x_{r+1}^{\epsilon_{r+1}}, \ldots, x_n^{\epsilon_n})$. On the other hand if some *i* is less than or equal to *r*, we see that *h* must send the product to an element strictly greater than the identity in *L*, again a contradiction. A group is indicable if there is a surjection of the group to \mathbb{Z} , the infinite cyclic group.

A group is locally indicable if every nontrivial finitely generated subgroup is indicable.

Corollary

If a group is locally indicable, then it is left-orderable.

Criteria for orderability

Exercise 4: Verify that the properties of being torsion-free, left-orderable or locally indicable are preserved under extensions. That is, if $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ is exact and K and H have the given property, then so does G.

This is not the case for bi-orderability. The Klein bottle group demonstrates this.

Example: Let $G = \langle x, y | x^{-1}yx = y^{-1} \rangle$ be the Klein bottle group (fundamental group of the Klein bottle). Let K be the subgroup generated by y.

Exercise 5: Verify that K is normal in G and isomorphic to \mathbb{Z} , the group of integers. Moreover H := G/K is also isomorphic to \mathbb{Z} .

Therefore we have an exact sequence $1 \to \mathbb{Z} \to G \to \mathbb{Z} \to 1$ and can conclude that G is left-orderable, and in fact locally indicable. Yet it is not bi-orderable, because if it were, the defining relation would imply the contradiction that y is positive if and only if y^{-1} is positive.

Bon Anniversaire, Patrick !