Ordered groups, knots, braids and hyperbolic 3-manifolds Minicourse in Caen

Dale Rolfsen, UBC

February and March 2017

Lecture 1: Introduction to ordered groups Lecture 2: Ordering knot groups; Fibred knots and surgery Lecture 3: Braids, $Aut(F_n)$ and minimal volume hyperbolic 3-manifolds Knot groups and their orderability.

Recall that we discussed orderability of groups and the closely related concept of local indicability. We have the following implications among these properties: Bi-orderable \implies Locally indicable \implies Left-orderable \implies Torsion-free None of these implications is reversible.

If K is a knot in \mathbb{S}^3 , its knot group is $\pi_1(\mathbb{S}^3\setminus K).$

Our goal is to show that all knot groups are left-orderable, in fact locally indicable.

This will be a special case of a more general result about 3-dimensional manifolds.

We will need a few ideas from 3-manifold theory.

Definition: A 3-manifold is *irreducible* if every tame 2-sphere in the manifold bounds a 3-dimensional ball in the manifold.

A nontrivial fact is that if $\tilde{X} \to X$ is a covering space, with X (and therefore \tilde{X}) a 3-manifold, then X is irreducible if and only if \tilde{X} is irreducible.

If $X = \mathbb{S}^3 \setminus K$ is a knot complement, then X is irreducible. This is also true if K is a link if (and only if) it is not a split link.

By Alexander duality, we also have that $H_1(\mathbb{S}^3\setminus \mathcal{K};\mathbb{Z})\cong \mathbb{Z}.$ That is, the first Betti number (the number of copies of $\mathbb Z$ in the first homology group) equals one.

Theorem

Suppose X is a connected, orientable, irreducible 3-manifold (possibly with boundary). If X has positive first Betti number, then $\pi_1(X)$ is locally indicable, and therefore left-orderable.

The proof, essentially due to Howie and Short, will be given below.

Corollary

Knot groups are locally indicable.

Consider X as in the hypothesis of the theorem.

 $\pi_1(X)$ is indicable, using the (surjective) Hurewicz homomorphism and a further homomorphism to one of the $\mathbb Z$ factors of $H_1(X)$.

 $\pi_1(X) \to H_1(X) \to \mathbb{Z}$

To show $\pi_1(X)$ is locally indicable, consider a finitely generated nontrivial subgroup $H < \pi_1(X)$. We need to find a surjection $H \to \mathbb{Z}$.

Case 1: H has finite index. This is easy; the Hurewicz map takes H to a finite index subgroup of $H_1(X)$, which therefore contains a copy of \mathbb{Z} .

Case 2: H has infinite index. Then there is a covering $p : \tilde{X} \to X$ with $p_*\pi_1(\tilde{X}) = H$. \tilde{X} is noncompact, but its fundamental group is f. g. so, by a theorem of Scott, there is a compact submanifold $C \subset \tilde{X}$ with inclusion inducing an isomorphism $\pi_1(C) \cong \pi_1(\tilde{X}) \cong H$. C necessarily has nonempty boundary. If $B \subset \partial C$ is a boundary component which is a sphere, then irreducibility implies that B bounds a 3-ball in \tilde{X} . That 3-ball either contains C or its interior is disjoint from C, and the former can't happen because that would imply the inclusion map $\pi_1(C) \to \pi_1(\tilde{X})$ is trivial. Therefore, we can adjoin that 3-ball to C removing B as a boundary component and not changing $\pi_1(C)$.

This process allows us to assume that ∂C is nonempty and has infinite homology groups.

Exercise 6: Conclude that C also has infinite homology. [Hint: one way to do this is by considering the Euler characteristic of the closed 3-manifold 2C, obtained by glueing two copies of C together along the boundary.]

Then we have surjections $H \cong \pi_1(C) \to H_1(C) \to \mathbb{Z}$ as required.

- It is well known that every (tame) knot in \mathbb{S}^3 is the boundary of a compact orientable surface (called a Seifert surface) in \mathbb{S}^3 .
- A knot is said to be fibred if there is a fibre bundle map $\mathbb{S}^3 \setminus \mathcal{K} \to \mathbb{S}^1$ with fibres being open orientable surfaces whose closures have K as boundary in \mathbb{S}^3 .
- In other words, the complement of K in \mathbb{S}^3 can be filled with a circle's worth of orientable surfaces.

If K is a fibred knot, with complement $X=\mathbb{S}^3\setminus K$ and with fibre F an open surface, the exact homotopy sequence of a fibration gives the short exact sequence:

$$
1\to \pi_1(\digamma)\to \pi_1(X)\to \pi_1(S^1)\to 1.
$$

But $\pi_1(\bar{F})$ is a free group and $\pi_1(S^1)\cong \mathbb{Z}$. Both these groups are locally indicable, so we conclude from Exercise 4 that the knot group $\pi_1(X)$ is locally indicable, and therefore left orderable.

That is, the group of a fibred knot is seen to be locally indicable without the need for the general theorem we have proved, which applies to all knots.

A fibration $X \rightarrow S^1$ with fibre F can be considered as the mapping cylinder of a (monodromy) homeomorphism $h : F \to F$:

$$
X \cong \frac{F \times [0,1]}{(x,1) \sim (h(x),0)}
$$

For a fibred knot with $X = \mathbb{S}^3 \setminus \mathcal{K}$ the Alexander polynomial is just the characteristic polynomial of the homology monodromy $H_1(F) \to H_1(F)$. Non-fibred knots also have an Alexander polynomial, but it may not be monic, as is the case for fibred knots.

Also, the knot group $\pi_1(X)$ is an HNN extension of the free group $\pi_1(F)$, corresponding to the homotopy monodromy $h_* : \pi_1(F) \to \pi_1(F)$, where $\pi_1(F) \cong \langle x_1, \ldots, x_{2\sigma} \rangle$ is a free group.

$$
\pi_1(X) \cong \langle x_1, \ldots, x_{2g}, t | h_*(x_i) = tx_i t^{-1} \rangle
$$

Exercise 7: This group is bi-orderable if and only if there is a bi-ordering of $\pi_1(F)$ which is preserved by h_* .

We will sketch the proofs of two theorems regarding bi-ordering fibred knot groups.

Theorem

- \bigcirc (Perron R.) If K is fibred and $\Delta_K(t)$ has all roots real and positive, then its group is bi-orderable.
- \bullet (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_K(t)$ has some real positive roots.

Before proving these theorems, we consider some examples.

Torus knots: curves which can be inscribed on the surface of an unknotted torus in $\mathbb{S}^3.$ For relatively prime integers p,q the torus knot $\mathcal{T}_{p,q}$ has group

$$
\langle a,b | a^p=b^q \rangle.
$$

Note that a commutes with b^q but not with b (unless the group is abelian, and the knot unknotted). We've already observed that in a bi-orderable group, if an element commutes with a nonzero power of another element, then the elements must themselves commute. Therefore:

Proposition

The group of a nontrivial torus knot is not bi-orderable.

Examples

The figure-eight knot 4₁
\npolynomial
$$
\Delta_{4_1} = t^2 - 3t + 1
$$
 with roots $\frac{3 \pm \sqrt{5}}{2}$, both real and positive.
\nProposition

The group of the knot $4₁$ is bi-orderable.

More bi-orderable knot groups

More bi-orderable knot groups

$$
12a_{0125} \Delta = 1 - 12t + 44t^{2} - 67t^{3} + 44t^{4} - 12t^{5} + t^{6}
$$

\n
$$
12a_{0181} \Delta = 1 - 11t + 40t^{2} - 61t^{3} + 40t^{4} - 11t^{5} + t^{6}
$$

\n
$$
12a_{1124} \Delta = 1 - 13t + 50t^{2} - 77t^{3} + 50t^{4} - 13t^{5} + t^{6}
$$

\n
$$
12n_{0013} \Delta = 1 - 7t + 13t^{2} - 7t^{3} + t^{4}
$$

More bi-orderable knot groups

$$
12n_{0145} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4
$$
\n
$$
12n_{0462} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4
$$
\n
$$
12n_{0838} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4
$$

 $\left($

Recall the Theorem: fibred and bi-orderable $\implies \Delta$ has positive roots. This can be used for an alternative proof that torus knots $T_{p,q}$, which are fibred, have non-bi-orderable group, because

$$
\Delta_{\mathcal{T}(p,q)}=\frac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}
$$

whose roots are on the unit circle and not real.

There are many other fibred knots which have non-biorderable group for similar reasons

The prime knots with 12 or fewer crossings which are known to have nonbi-orderable group, because they are fibred and have Alexander polynomials without positive real roots, are as follows:

 $3_1, 5_1, 6_3, 7_1, 7_7, 8_7, 8_{10}, 8_{16}, 8_{19}, 8_{20}, 9_1, 9_{17}, 9_{22}, 9_{26}, 9_{28}, 9_{29}, 9_{31}$ 9_{32} , 9_{44} , 9_{47} , 10_{5} , 10_{17} , 10_{44} , 10_{47} , 10_{48} , 10_{62} , 10_{69} , 10_{73} , 10_{79} , 10_{85} 10_{89} , 10_{91} , 10_{99} , 10_{100} , 10_{104} , 10_{109} , 10_{118} , 10_{124} , 10_{125} , 10_{126} , 10_{132} , 10_{139} , 10_{140} , 10_{143} , 10_{145} , 10_{148} , 10_{151} , 10_{152} , 10_{153} , 10_{154} , 10_{156} , 10_{159} , 10_{161} , 10_{163} , 11_{29} , 11_{214} , 11_{222} , 11_{224} , 11_{26} , 11_{235} , 11_{240} , 11_{244} , 11_{247} , 11a₅₃, 11a₇₂, 11a₇₃, 11a₇₄, 11a₇₆, 11a₈₀, 11a₈₃, 11a₈₈, 11a₁₀₆, 11a₁₀₉, $11a_{113}$, $11a_{121}$, $11a_{126}$, $11a_{127}$, $11a_{129}$, $11a_{160}$, $11a_{170}$, $11a_{175}$, $11a_{177}$, $11a_{179}$, $11a_{180}$, $11a_{182}$, $11a_{189}$, $11a_{194}$, $11a_{215}$, $11a_{233}$, $11a_{250}$, $11a_{251}$, $11a_{253}$, $11a_{257}$, $11a_{261}$, $11a_{266}$, $11a_{274}$, $11a_{287}$, $11a_{288}$, $11a_{289}$, $11a_{293}$, $11a_{300}$, $11a_{302}$, $11a_{306}$, $11a_{315}$, $11a_{316}$,

 $11a_{326}$, $11a_{330}$, $11a_{332}$, $11a_{346}$, $11a_{367}$, $11n_7$, $11n_{11}$, $11n_{12}$, $11n_{15}$, $11n_{22}$, $11n_{23}$, $11n_{24}$, $11n_{25}$, $11n_{28}$, $11n_{41}$, $11n_{47}$, $11n_{52}$, $11n_{54}$, $11n_{56}$, $11n_{58}$, $11n_{61}$, $11n_{74}$, $11n_{76}$, $11n_{77}$, $11n_{78}$, $11n_{82}$, $11n_{87}$, $11n_{96}$, $11n_{106}$, $11n_{107}$, $11n_{112}$, $11n_{124}$, $11n_{125}$, $11n_{127}$, $11n_{128}$, $11n_{129}$, $11n_{131}$, $11n_{133}$, $11n_{145}$, $11n_{146}$, $11n_{147}$, $11n_{149}$, $11n_{153}$, $11n_{154}$, $11n_{158}$, $11n_{159}$, $11n_{160}$, $11n_{167}$, $11n_{168}$, $11n_{173}$, $11n_{176}$, $11n_{182}$, $11n_{183}$, $12a_{0001}$, $12a_{0008}$, $12a_{0011}$, $12a_{0013}$, $12a_{0015}$, $12a_{0016}$, $12a_{0020}$, $12a_{0024}$, $12a_{0036}$, $12a_{0030}$, $12a_{0033}$, $12a_{0048}$, $12a_{0058}$, $12a_{0060}$, $12a_{0066}$, $12a_{0070}$, $12a_{0077}$, $12a_{0079}$, $12a_{0080}$, $12a_{0091}$, $12a_{0099}$, $12a_{0101}$, $12a_{0111}$, $12a_{0115}$, $12a_{0119}$, $12a_{0134}$, $12a_{0139}$, 12a₀₁₄₁, 12a₀₁₄₂, 12a₀₁₄₆, 12a₀₁₅₇, 12a₀₁₈₄, 12a₀₁₈₆, 12a₀₁₈₈, 12a₀₁₉₀, $12a_{0209}$, $12a_{0214}$, $12a_{0217}$, $12a_{0219}$, $12a_{0222}$, $12a_{0245}$, $12a_{0246}$, $12a_{0250}$, $12a_{0261}$, $12a_{0265}$, $12a_{0268}$, $12a_{0271}$, $12a_{0281}$, $12a_{029}$, $12a_{0316}$, $12a_{0323}$, $12a_{0331}$, $12a_{0333}$, $12a_{0334}$, $12a_{0349}$,

More non bi-orderable knot groups

 $12a_{0351}$, $12a_{0362}$, $12a_{0363}$, $12a_{0369}$, $12a_{0374}$, $12a_{0386}$, $12a_{0398}$, $12a₀₄₂₆, 12a₀₄₃₉, 12a₀₄₅₂, 12a₀₄₆₄, 12a₀₄₆₆, 12a₀₄₆₉, 12a₀₄₇₃, 12a₀₄₇₆$ $12a₀₄₇₇$, $12a₀₄₇₉$, $12a₀₄₉₇$, $12a₀₄₉₉$, $12a₀₅₁₅$, $12a₀₅₆₁$, $12a₀₅₆₅$, 12an569, 12an576, 12an579, 12an629, 12an662, 12an696, 12an697, 12an699, $12a_{0700}$, $12a_{0706}$, $12a_{0707}$, $12a_{0716}$, $12a_{0815}$, $12a_{0824}$, $12a_{0835}$, $12a_{0859}$, $12a$ ₀₈₆₄, $12a$ ₀₈₆₇, $12a$ ₀₈₇₈, $12a$ ₀₈₉₈, $12a$ ₀₉₁₆, $12a$ ₀₉₂₈, $12a$ ₀₉₃₅, $12a$ ₀₉₈₁ $12a_{0984}$, $12a_{0999}$, $12a_{1002}$, $12a_{1013}$, $12a_{1027}$, $12a_{1047}$, $12a_{1055}$, $12a_{1076}$, 12a₁₁₀₅, 12a₁₁₁₄, 12a₁₁₂₀, 12a₁₁₂₂, 12a₁₁₂₈, 12a₁₁₇₆, 12a₁₁₈₈, 12a1203, 12a1219, 12a1220, 12a1221, 12a1226, 12a1227, 12a1230, 12a1238, $12a_{1246}$, $12a_{1248}$, $12a_{1253}$, $12n_{0005}$, $12n_{0006}$, $12n_{0007}$, $12n_{0010}$, $12n_{0016}$, $12n_{0019}$, $12n_{0020}$, $12n_{0038}$, $12n_{0041}$, $12n_{0042}$, $12n_{0052}$, $12n_{0064}$, $12n_{0070}$, $12n_{0073}$, $12n_{0090}$, $12n_{0091}$, $12n_{0092}$, $12n_{0098}$, $12n_{0104}$, $12n_{0105}$, $12n_{0106}$, $12n_{0113}$, $12n_{0115}$, $12n_{0120}$, $12n_{0121}$, $12n_{0125}$, $12n_{0135}$,

More non bi-orderable knot groups

 $12n_{0136}$, $12n_{0137}$, $12n_{0139}$, $12n_{0142}$, $12n_{0148}$, $12n_{0150}$, $12n_{0151}$, $12n_{0156}$, $12n_{0157}$, $12n_{0165}$, $12n_{0174}$, $12n_{0175}$, $12n_{0184}$, $12n_{0186}$, $12n_{0187}$, $12n_{0188}$, $12n_{0190}$, $12n_{0192}$, $12n_{0198}$, $12n_{0199}$, $12n_{0205}$, $12n_{0226}$, $12n_{0230}$, $12n_{0233}$, $12n_{0235}$, $12n_{0242}$, $12n_{0261}$, $12n_{0272}$, $12n_{0276}$, $12n_{0282}$, $12n_{0285}$, $12n_{0296}$, $12n_{0309}$, $12n_{0318}$, $12n_{0326}$, $12n_{0327}$, $12n_{0328}$, $12n_{0344}$, $12n_{0344}$, $12n_{0346}$, $12n_{0347}$, $12n_{0348}$, $12n_{0350}$, $12n_{0352}$, $12n_{0354}$, $12n_{0355}$, $12n_{0362}$, $12n_{0366}$, $12n_{0371}$, $12n_{0372}$, $12n_{0377}$, $12n_{0390}$, $12n_{0392}$, $12n_{0401}$, $12n_{0402}$, $12n_{0405}$, $12n_{0409}$, $12n_{0416}$, $12n_{0417}$, $12n_{0423}$, $12n_{0425}$, $12n_{0426}$, $12n_{0427}$, $12n_{0437}$, $12n_{0439}$, $12n_{0449}$, $12n_{0451}$, $12n_{0454}$, $12n_{0456}$, $12n_{0458}$, $12n_{0459}$, $12n_{0460}$, $12n_{0466}$, $12n_{0468}$, $12n_{0472}$, $12n_{0475}$, $12n_{0484}$, $12n_{0488}$, $12n_{0495}$, $12n_{0505}$ $12n_{0506}$, $12n_{0508}$, $12n_{0514}$, $12n_{0517}$, $12n_{0518}$, $12n_{0522}$, $12n_{0526}$, $12n_{0528}$, $12n_{0531}$, $12n_{0538}$,

 $12n_{0543}$, $12n_{0549}$, $12n_{0555}$, $12n_{0558}$, $12n_{0570}$, $12n_{0574}$, $12n_{0577}$, $12n_{0579}$, $12n_{0582}$, $12n_{0591}$, $12n_{0592}$, $12n_{0598}$, $12n_{0601}$, $12n_{0604}$, $12n_{0609}$, $12n_{0610}$, $12n_{0613}$, $12n_{0619}$, $12n_{0621}$, $12n_{0623}$, $12n_{0627}$, $12n_{0629}$, $12n_{0634}$, $12n_{0640}$, $12n_{0641}$, $12n_{0642}$, $12n_{0647}$, $12n_{0649}$, $12n_{0657}$, $12n_{0658}$, $12n_{0660}$, $12n_{0666}$, $12n_{0668}$, $12n_{0670}$, $12n_{0672}$, $12n_{0673}$, $12n_{0675}$, $12n_{0679}$, $12n_{0681}$, $12n_{0683}$, $12n_{0684}$, $12n_{0686}$, $12n_{0688}$, $12n_{0690}$, $12n_{0694}$, $12n_{0695}$, $12n_{0697}$, $12n_{0703}$, $12n_{0707}$, $12n_{0708}$, $12n_{0709}$, $12n_{0711}$, $12n_{0717}$, $12n_{0719}$, $12n_{0721}$, $12n_{0725}$, $12n_{0730}$, $12n_{0739}$, $12n_{0747}$, $12n_{0749}$, $12n_{0751}$, $12n_{0754}$, $12n_{0761}$, $12n_{0762}$, $12n_{0781}$, $12n_{0790}$, $12n_{0791}$, $12n_{0798}$, $12n_{0802}$, $12n_{0803}$, $12n_{0835}$, $12n_{0837}$, $12n_{0839}$, $12n_{0842}$, $12n_{0848}$, $12n_{0850}$, $12n_{0852}$, $12n_{0866}$, $12n_{0871}$, $12n_{0887}$, $12n_{0888}$.

As motivation, consider an upper triangular matrix multiplied by a vector:

$$
\left(\begin{array}{ccc} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & \lambda_3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{ccc} \lambda_1 x_1 + * x_2 + * x_3 \\ \lambda_2 x_2 + * x_3 \\ \lambda_3 x_3 \end{array}\right)
$$

Now, declaring a vector (in \mathbb{R}^3) to be "positive" if its last nonzero entry is greater than zero, we see that, if also the eigenvectors λ_i are positive, then multiplication by such a matrix preserves that positive cone of \mathbb{R}^3 , considered as an additive group. So we see

Proposition

If all the eigenvalues of a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ are real and positive, then there is a bi-ordering of \mathbb{R}^n which is preserved by L.

Theorem: All roots positive implies bi-orderable

So our problem reduces to showing:

Proposition

Let F be a finitely generated free group and $h : F \rightarrow F$ an automorphism. If all the eigenvalues of $h_* : H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ are real and positive, then there is a bi-ordering of F preserved by h.

One way to order a free group F is to use the lower central series $F_1 \supset F_2 \supset \cdots$ defined by

$$
F_1 = F, \quad F_{i+1} = [F, F_i]
$$

which has the properties that $\bigcap F_i = \{1\}$ and F_i/F_{i+1} is free abelian. Choose an arbitrary bi-ordering of F_i/F_{i+1} , and define a positive cone of F by declaring $1 \neq x \in F$ positive if its class in F_i/F_{i+1} is positive in the chosen ordering, where *i* is the last subscript such that $x \in F_i$.

If $h: F \to F$ is an automorphism it preserves the lower central series and induces maps of the lower central quotients: $h_i : F_i/F_{i+1} \rightarrow F_i/F_{i+1}.$ With this notation, h_1 is just the abelianization h_{ab} . In a sense, all the h_i are determined by h_1 . That is, there is an embedding of F_i/F_{i+1} in the tensor power $F_{ab}^{\otimes k}$, and the map h_i is just the restriction of $h_{ab}^{\otimes k}$. The assumption that all eigenvalues of h_{ab} are real and positive implies that the same is true of all its tensor powers. This allows us to find bi-orderings of the free abelian groups F_i/F_{i+1}

which are invariant under h_i . Using these to bi-order \digamma , we get invariance under h, which proves the proposition and therefore the theorem.

We now turn to the proof of the theorem: If K is fibred and its group is bi-orderable, then $\Delta_K(t)$ has some real positive roots.

Theorem

Suppose G is a nontrivial finitely generated bi-orderable group and that $\phi: G \to G$ preserves a bi-ordering of G. Then the induced map

 $\phi_* : H_1(G; \mathbb{O}) \to H_1(G; \mathbb{O})$

has a positive eigenvalue.

Theorem: Bi-orderable implies some positive roots

The key idea is to consider a linear automorphism $L: \mathbb{Q}^n \to \mathbb{Q}^n$ which preserves an ordering. Regarding \mathbb{Q}^n as a subset of \mathbb{R}^n , there is a hyperplane $H\subset \mathbb{R}^n$ defined by $H = \{x \in \mathbb{R}^n |$ every nbhd. of x contains positive and negative points} H separates \mathbb{R}^n and is invariant under L. Consider the unit sphere \mathbb{S}^{n-1} of \mathbb{R}^n , and let D denote the closed hemisphere of \mathbb{S}^{n-1} which lies on the "positive" side of H . There is a mapping $D \to D$ defined by

$$
x \to \frac{L(x)}{|L(x)|}
$$

Since D is an $(n - 1)$ -ball, this map has a fixed point (Brouwer). This fixed point corresponds to an eigenvector of L, which has a positive real eigenvalue.

We conclude with some applications to surgery on a knot K in $\mathbb{S}^3.$ One removes a tubular neighborhood of K and attaches a solid torus $\mathbb{S}^1\times D^2$ so that the meridian $\{*\}\times\mathbb{S}^1$ is attached to a specified "framing" curve on the boundary of the neighborhood.

By theorem of Wallace and Lickorish, every compact, orientable 3-manifold (without boundary) can be constructed by surgery on some disjoint union of knots (i. e. a link) in \mathbb{S}^3 .

Consider surgery on the trefoil knot:

With $+1$ framing, as pictured, one gets the Poincaré homology sphere, as constructed by Max Dehn.This is a homology sphere with fundamental group

$$
\langle a, b | (ab)^2 = a^3 = b^5 \rangle
$$

This is a finite group, of order 120, so its group is certainly not left-orderable. For the next example, we'll need to consider $SL_2(\mathbb{R})$, which is one of the eight Thurston 3-manifold geometries.

Note that the matrix group $SL_2(\mathbb{R})$ acts on the circle. For example, it acts on $S^1 \cong \mathbb{R} + \infty$ by fractional linear transformations, preserving orientation. In fact as a topological space, $SL_2(\mathbb{R})$ has the homotopy type of the circle. Therefore its universal covering $SL_2(\mathbb{R}) \to SL_2(\mathbb{R})$ is an infinite cyclic covering. Moreover, $SL_2(\mathbb{R})$ has a group structure and acts on the universal cover $\mathbb R$ of $\mathbb S^1$ by orientation-preserving homeomorphisms. That is, $SL_2(\mathbb{R})$ is a subgroup of $Homeo_+(\mathbb{R})$, and we conclude that $SL_2(\mathbb{R})$ is a left-orderable group.

If we do surgery on the trefoil using -1 framing, the resulting 3-manifold M, again a homology sphere, has fundamental group

$$
\langle a, b | (ab)^2 = a^3 = b^7 \rangle
$$

G. Bergman observed that this group maps injectively to $SL_2(\mathbb{R})$, which is a left-orderable group. Thus $\pi_1(M)$ is left-orderable (even though its first Betti number is zero).

It is not bi-orderable or even locally indicable, because it is finitely-generated and perfect (that is, abelianizes to the trivial group).

Theorem

Suppose K is a fibred knot in S^3 and nontrivial surgery on K produces a 3-manifold M whose fundamental group is bi-orderable. Then the surgery must be longitudinal (that is, 0-framed) and $\Delta_K(t)$ must have a positive real root. Moreover, M fibres over S^1 .

Ozsváth and Szabó define an L-space to be a closed 3-manifold M such that $H_1(M; \mathbb{Q}) = 0$ and its Heegaard-Floer homology $\overline{HF}(M)$ is a free abelian group of rank equal to $|H_1(M;\mathbb{Z})|$. Lens spaces, and more generally 3-manifolds with finite fundamental group are examples of L-spaces. But there are also many rational homology spheres whose fundamental group is infinite.

Theorem

Suppose $K\subset S^3$ is a knot whose group is bi-orderable. Then one cannot obtain an L-space by surgery on K.

Proof sketch: Suppose surgery on K results in an L-space.

By Yi Ni, K must be fibred. Moreover, Ozsváth and Szabó show that the Alexander polynomial of K must have a special form.

Then one argues that a polynomial of this form has no positive real roots, so the knot group cannot be bi-ordered.

Merci beaucoup!

Next time: Braids, $Aut(F_n)$ and minimal volume hyperbolic 3-manifolds.