Ordered groups, knots, braids and hyperbolic 3-manifolds Minicourse in Caen

Dale Rolfsen, UBC

February and March 2017

Lecture 1: Introduction to ordered groups Lecture 2: Ordering knot groups; Fibred knots and surgery Lecture 3: Braids, $Aut(F_n)$ and minimal volume hyperbolic 3-manifolds Knot groups and their orderability.

Recall that we discussed orderability of groups and the closely related concept of local indicability. We have the following implications among these properties: Bi-orderable \implies Locally indicable \implies Left-orderable \implies Torsion-free None of these implications is reversible. If K is a knot in \mathbb{S}^3 , its knot group is $\pi_1(\mathbb{S}^3 \setminus K)$.

Our goal is to show that all knot groups are left-orderable, in fact locally indicable.

This will be a special case of a more general result about 3-dimensional manifolds.

We will need a few ideas from 3-manifold theory.

Definition: A 3-manifold is *irreducible* if every tame 2-sphere in the manifold bounds a 3-dimensional ball in the manifold.

A nontrivial fact is that if $\tilde{X} \to X$ is a covering space, with X (and therefore \tilde{X}) a 3-manifold, then X is irreducible if and only if \tilde{X} is irreducible.

If $X = \mathbb{S}^3 \setminus K$ is a knot complement, then X is irreducible. This is also true if K is a link if (and only if) it is not a split link. By Alexander duality, we also have that $H_1(\mathbb{S}^3 \setminus K; \mathbb{Z}) \cong \mathbb{Z}$. That is, the first Betti number (the number of copies of \mathbb{Z} in the first homology group) equals one.

5/1

Theorem

Suppose X is a connected, orientable, irreducible 3-manifold (possibly with boundary). If X has positive first Betti number, then $\pi_1(X)$ is locally indicable, and therefore left-orderable.

The proof, essentially due to Howie and Short, will be given below.

Corollary

Knot groups are locally indicable.

Consider X as in the hypothesis of the theorem.

 $\pi_1(X)$ is indicable, using the (surjective) Hurewicz homomorphism and a further homomorphism to one of the \mathbb{Z} factors of $H_1(X)$.

 $\pi_1(X) \to H_1(X) \to \mathbb{Z}$

To show $\pi_1(X)$ is locally indicable, consider a finitely generated nontrivial subgroup $H < \pi_1(X)$. We need to find a surjection $H \to \mathbb{Z}$.

Case 1: *H* has finite index. This is easy; the Hurewicz map takes *H* to a finite index subgroup of $H_1(X)$, which therefore contains a copy of \mathbb{Z} .

Case 2: *H* has infinite index. Then there is a covering $p: \tilde{X} \to X$ with $p_*\pi_1(\tilde{X}) = H$. \tilde{X} is noncompact, but its fundamental group is f. g. so, by a theorem of Scott, there is a compact submanifold $C \subset \tilde{X}$ with inclusion inducing an isomorphism $\pi_1(C) \cong \pi_1(\tilde{X}) \cong H$. *C* necessarily has nonempty boundary. If $B \subset \partial C$ is a boundary component which is a sphere, then irreducibility implies that *B* bounds a 3-ball in \tilde{X} . That 3-ball either contains *C* or its interior is disjoint from *C*, and the former can't happen because that would imply the inclusion map $\pi_1(C) \to \pi_1(\tilde{X})$ is trivial. Therefore, we can adjoin that 3-ball to *C* removing *B* as a boundary component and not changing $\pi_1(C)$. This process allows us to assume that ∂C is nonempty and has infinite homology groups.

Exercise 6: Conclude that C also has infinite homology. [Hint: one way to do this is by considering the Euler characteristic of the closed 3-manifold 2C, obtained by glueing two copies of C together along the boundary.]

Then we have surjections $H \cong \pi_1(C) \to H_1(C) \to \mathbb{Z}$ as required.

- It is well known that every (tame) knot in \mathbb{S}^3 is the boundary of a compact orientable surface (called a Seifert surface) in \mathbb{S}^3 .
- A knot is said to be fibred if there is a fibre bundle map $\mathbb{S}^3 \setminus K \to \mathbb{S}^1$ with fibres being open orientable surfaces whose closures have K as boundary in \mathbb{S}^3 .
- In other words, the complement of K in \mathbb{S}^3 can be filled with a circle's worth of orientable surfaces.

Fibred knots

If K is a fibred knot, with complement $X = \mathbb{S}^3 \setminus K$ and with fibre F an open surface, the exact homotopy sequence of a fibration gives the short exact sequence:

$$1 \to \pi_1(F) \to \pi_1(X) \to \pi_1(S^1) \to 1.$$

But $\pi_1(F)$ is a free group and $\pi_1(S^1) \cong \mathbb{Z}$. Both these groups are locally indicable, so we conclude from Exercise 4 that the knot group $\pi_1(X)$ is locally indicable, and therefore left orderable.

That is, the group of a fibred knot is seen to be locally indicable without the need for the general theorem we have proved, which applies to all knots.

A fibration $X \to S^1$ with fibre F can be considered as the mapping cylinder of a (monodromy) homeomorphism $h: F \to F$:

$$X \cong \frac{F \times [0,1]}{(x,1) \sim (h(x),0)}$$

For a fibred knot with $X = \mathbb{S}^3 \setminus K$ the Alexander polynomial is just the characteristic polynomial of the homology monodromy $H_1(F) \to H_1(F)$. Non-fibred knots also have an Alexander polynomial, but it may not be monic, as is the case for fibred knots. Also, the knot group $\pi_1(X)$ is an HNN extension of the free group $\pi_1(F)$, corresponding to the homotopy monodromy $h_*: \pi_1(F) \to \pi_1(F)$, where $\pi_1(F) \cong \langle x_1, \ldots, x_{2g} \rangle$ is a free group.

$$\pi_1(X) \cong \langle x_1, \ldots, x_{2g}, t | h_*(x_i) = t x_i t^{-1} \rangle$$

Exercise 7: This group is bi-orderable if and only if there is a bi-ordering of $\pi_1(F)$ which is preserved by h_* .

We will sketch the proofs of two theorems regarding bi-ordering fibred knot groups.

Theorem

- (Perron R.) If K is fibred and $\Delta_K(t)$ has all roots real and positive, then its group is bi-orderable.
- (Clay-R.) If K is fibred and its group is bi-orderable, then $\Delta_K(t)$ has some real positive roots.

Before proving these theorems, we consider some examples.

Torus knots: curves which can be inscribed on the surface of an unknotted torus in \mathbb{S}^3 . For relatively prime integers p, q the torus knot $T_{p,q}$ has group

$$\langle a,b|a^{p}=b^{q}
angle .$$

Note that a commutes with b^q but not with b (unless the group is abelian, and the knot unknotted). We've already observed that in a bi-orderable group, if an element commutes with a nonzero power of another element, then the elements must themselves commute. Therefore:

Proposition

The group of a nontrivial torus knot is not bi-orderable.

Examples

The figure-eight knot 4₁ is fibred and has Alexander
polynomial
$$\Delta_{4_1} = t^2 - 3t + 1$$
 with roots $\frac{3 \pm \sqrt{5}}{2}$, both real and positive.
From Theorem 2 we conclude
Proposition

The group of the knot 4_1 is bi-orderable.

$$12a_{0125} \Delta = 1 - 12t + 44t^2 - 67t^3 + 44t^4 - 12t^5 + t^6$$
$$12a_{0181} \Delta = 1 - 11t + 40t^2 - 61t^3 + 40t^4 - 11t^5 + t^6$$
$$12a_{1124} \Delta = 1 - 13t + 50t^2 - 77t^3 + 50t^4 - 13t^5 + t^6$$
$$12a_{0012} \Delta = 1 - 7t + 13t^2 - 7t^3 + t^4$$

$$12n_{0145} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4$$

$$12n_{0462} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4$$

$$12n_{0838} \Delta = 1 - 6t + 11t^2 - 6t^3 + t^4$$

Recall the Theorem: fibred and bi-orderable $\implies \Delta$ has positive roots. This can be used for an alternative proof that torus knots $T_{p,q}$, which are fibred, have non-bi-orderable group, because

$$\Delta_{\mathcal{T}(p,q)} = \frac{(t^{pq} - 1)(t - 1)}{(t^p - 1)(t^q - 1)}$$

whose roots are on the unit circle and not real.

There are many other fibred knots which have non-biorderable group for similar reasons

The prime knots with 12 or fewer crossings which are known to have nonbi-orderable group, because they are fibred and have Alexander polynomials without positive real roots, are as follows:

 $\begin{array}{l} 3_1, \ 5_1, \ 6_3, \ 7_1, \ 7_7, \ 8_7, \ 8_{10}, \ 8_{16}, \ 8_{19}, \ 8_{20}, \ 9_1, \ 9_{17}, \ 9_{22}, \ 9_{26}, \ 9_{28}, \ 9_{29}, \ 9_{31}, \\ 9_{32}, \ 9_{44}, \ 9_{47}, \ 10_5, \ 10_{17}, \ 10_{44}, \ 10_{47}, \ 10_{48}, \ 10_{62}, \ 10_{69}, \ 10_{73}, \ 10_{79}, \ 10_{85}, \\ 10_{89}, \ 10_{91}, \ 10_{99}, \ 10_{100}, \ 10_{104}, \ 10_{109}, \ 10_{118}, \ 10_{124}, \ 10_{125}, \ 10_{126}, \ 10_{132}, \\ 10_{139}, \ 10_{140}, \ 10_{143}, \ 10_{145}, \ 10_{148}, \ 10_{151}, \ 10_{152}, \ 10_{153}, \ 10_{154}, \ 10_{156}, \ 10_{159}, \\ 10_{161}, \ 10_{163}, \ 11a_{9}, \ 11a_{14}, \ 11a_{22}, \ 11a_{24}, \ 11a_{26}, \ 11a_{35}, \ 11a_{40}, \ 11a_{44}, \ 11a_{47}, \\ 11a_{53}, \ 11a_{72}, \ 11a_{73}, \ 11a_{74}, \ 11a_{76}, \ 11a_{80}, \ 11a_{83}, \ 11a_{88}, \ 11a_{106}, \ 11a_{109}, \\ 11a_{113}, \ 11a_{121}, \ 11a_{126}, \ 11a_{127}, \ 11a_{129}, \ 11a_{160}, \ 11a_{170}, \ 11a_{175}, \ 11a_{177}, \\ 11a_{179}, \ 11a_{180}, \ 11a_{182}, \ 11a_{189}, \ 11a_{194}, \ 11a_{215}, \ 11a_{233}, \ 11a_{250}, \ 11a_{251}, \\ 11a_{253}, \ 11a_{257}, \ 11a_{261}, \ 11a_{266}, \ 11a_{274}, \ 11a_{287}, \ 11a_{288}, \ 11a_{289}, \ 11a_{293}, \\ 11a_{300}, \ 11a_{302}, \ 11a_{315}, \ 11a_{316}, \end{array}$

 $11a_{326}, 11a_{330}, 11a_{332}, 11a_{346}, 11a_{367}, 11n_7, 11n_{11}, 11n_{12}, 11n_{15}, 11n_{22}, 11n_{22}, 11n_{23}, 11$ $11n_{23}$, $11n_{24}$, $11n_{25}$, $11n_{28}$, $11n_{41}$, $11n_{47}$, $11n_{52}$, $11n_{54}$, $11n_{56}$, $11n_{58}$, $11n_{61}$, $11n_{74}$, $11n_{76}$, $11n_{77}$, $11n_{78}$, $11n_{82}$, $11n_{87}$, $11n_{92}$, $11n_{96}$, $11n_{106}$, $11n_{107}, 11n_{112}, 11n_{124}, 11n_{125}, 11n_{127}, 11n_{128}, 11n_{129}, 11n_{131}, 11n_{133},$ $11n_{145}, 11n_{146}, 11n_{147}, 11n_{149}, 11n_{153}, 11n_{154}, 11n_{158}, 11n_{159}, 11n_{160},$ $11n_{167}, 11n_{168}, 11n_{173}, 11n_{176}, 11n_{182}, 11n_{183}, 12a_{0001}, 12a_{0008}, 12a_{0011},$ $12a_{0013}, 12a_{0015}, 12a_{0016}, 12a_{0020}, 12a_{0024}, 12a_{0026}, 12a_{0030}, 12a_{0033},$ $12a_{0048}, 12a_{0058}, 12a_{0060}, 12a_{0066}, 12a_{0070}, 12a_{0077}, 12a_{0079}, 12a_{0080},$ $12a_{0091}, 12a_{0099}, 12a_{0101}, 12a_{0111}, 12a_{0115}, 12a_{0119}, 12a_{0134}, 12a_{0139},$ $12a_{0141}, 12a_{0142}, 12a_{0146}, 12a_{0157}, 12a_{0184}, 12a_{0186}, 12a_{0188}, 12a_{0190},$ $12a_{0200}, 12a_{0214}, 12a_{0217}, 12a_{0219}, 12a_{0222}, 12a_{0245}, 12a_{0246}, 12a_{0250},$ $12a_{0261}, 12a_{0265}, 12a_{0268}, 12a_{0271}, 12a_{0281}, 12a_{0299}, 12a_{0316}, 12a_{0323},$ $12a_{0331}$, $12a_{0333}$, $12a_{0334}$, $12a_{0349}$,

 $12a_{0351}, 12a_{0362}, 12a_{0363}, 12a_{0369}, 12a_{0374}, 12a_{0386}, 12a_{0396}, 12a_{0398},$ $12a_{0426}, 12a_{0439}, 12a_{0452}, 12a_{0464}, 12a_{0466}, 12a_{0469}, 12a_{0473}, 12a_{0476},$ $12a_{0477}$, $12a_{0479}$, $12a_{0497}$, $12a_{0499}$, $12a_{0515}$, $12a_{0536}$, $12a_{0561}$, $12a_{0565}$, $12a_{0569}$, $12a_{0576}$, $12a_{0579}$, $12a_{0629}$, $12a_{0662}$, $12a_{0696}$, $12a_{0697}$, $12a_{0699}$, $12a_{0700}, 12a_{0706}, 12a_{0707}, 12a_{0716}, 12a_{0815}, 12a_{0824}, 12a_{0835}, 12a_{0859},$ $12a_{0864}, 12a_{0867}, 12a_{0878}, 12a_{0898}, 12a_{0916}, 12a_{0928}, 12a_{0935}, 12a_{0981},$ $12a_{0984}, 12a_{0999}, 12a_{1002}, 12a_{1013}, 12a_{1027}, 12a_{1047}, 12a_{1065}, 12a_{1076},$ $12a_{1105}, 12a_{1114}, 12a_{1120}, 12a_{1122}, 12a_{1128}, 12a_{1168}, 12a_{1176}, 12a_{1188},$ $12a_{1203}, 12a_{1219}, 12a_{1220}, 12a_{1221}, 12a_{1226}, 12a_{1227}, 12a_{1230}, 12a_{1238},$ $12a_{1246}, 12a_{1248}, 12a_{1253}, 12n_{0005}, 12n_{0006}, 12n_{0007}, 12n_{0010}, 12n_{0016},$ $12n_{0019}, 12n_{0020}, 12n_{0038}, 12n_{0041}, 12n_{0042}, 12n_{0052}, 12n_{0064}, 12n_{0070},$ $12n_{0073}, 12n_{0090}, 12n_{0091}, 12n_{0092}, 12n_{0098}, 12n_{0104}, 12n_{0105}, 12n_{0106},$ $12n_{0113}, 12n_{0115}, 12n_{0120}, 12n_{0121}, 12n_{0125}, 12n_{0135},$

 $12n_{0136}, 12n_{0137}, 12n_{0139}, 12n_{0142}, 12n_{0148}, 12n_{0150}, 12n_{0151}, 12n_{0156},$ $12n_{0157}$, $12n_{0165}$, $12n_{0174}$, $12n_{0175}$, $12n_{0184}$, $12n_{0186}$, $12n_{0187}$, $12n_{0188}$, $12n_{0190}, 12n_{0192}, 12n_{0198}, 12n_{0199}, 12n_{0205}, 12n_{0226}, 12n_{0230}, 12n_{0233},$ $12n_{0235}$, $12n_{0242}$, $12n_{0261}$, $12n_{0272}$, $12n_{0276}$, $12n_{0282}$, $12n_{0285}$, $12n_{0296}$, $12n_{0309}$, $12n_{0318}$, $12n_{0326}$, $12n_{0327}$, $12n_{0328}$, $12n_{0329}$, $12n_{0344}$, $12n_{0346}$, $12n_{0347}$, $12n_{0348}$, $12n_{0350}$, $12n_{0352}$, $12n_{0354}$, $12n_{0355}$, $12n_{0362}$, $12n_{0366}$, $12n_{0371}$, $12n_{0372}$, $12n_{0377}$, $12n_{0390}$, $12n_{0392}$, $12n_{0401}$, $12n_{0402}$, $12n_{0405}$, $12n_{0409}$, $12n_{0416}$, $12n_{0417}$, $12n_{0423}$, $12n_{0425}$, $12n_{0426}$, $12n_{0427}$, $12n_{0437}$, $12n_{0439}$, $12n_{0449}$, $12n_{0451}$, $12n_{0454}$, $12n_{0456}$, $12n_{0458}$, $12n_{0459}$, $12n_{0460}$, $12n_{0466}$, $12n_{0468}$, $12n_{0472}$, $12n_{0475}$, $12n_{0484}$, $12n_{0488}$, $12n_{0495}$, $12n_{0505}$, $12n_{0506}, 12n_{0508}, 12n_{0514}, 12n_{0517}, 12n_{0518}, 12n_{0522}, 12n_{0526}, 12n_{0528},$ $12n_{0531}, 12n_{0538}$

 $12n_{0543}, 12n_{0549}, 12n_{0555}, 12n_{0558}, 12n_{0570}, 12n_{0574}, 12n_{0577}, 12n_{0579},$ $12n_{0582}$, $12n_{0591}$, $12n_{0592}$, $12n_{0598}$, $12n_{0601}$, $12n_{0604}$, $12n_{0609}$, $12n_{0610}$, $12n_{0613}$, $12n_{0619}$, $12n_{0621}$, $12n_{0623}$, $12n_{0627}$, $12n_{0629}$, $12n_{0634}$, $12n_{0640}$, $12n_{0641}, 12n_{0642}, 12n_{0647}, 12n_{0649}, 12n_{0657}, 12n_{0658}, 12n_{0660}, 12n_{0666}, 12n_$ $12n_{0668}, 12n_{0670}, 12n_{0672}, 12n_{0673}, 12n_{0675}, 12n_{0679}, 12n_{0681}, 12n_{0683},$ $12n_{0684}, 12n_{0686}, 12n_{0688}, 12n_{0690}, 12n_{0694}, 12n_{0695}, 12n_{0697}, 12n_{0703},$ $12n_{0707}$, $12n_{0708}$, $12n_{0709}$, $12n_{0711}$, $12n_{0717}$, $12n_{0719}$, $12n_{0721}$, $12n_{0725}$, $12n_{0730}$, $12n_{0739}$, $12n_{0747}$, $12n_{0749}$, $12n_{0751}$, $12n_{0754}$, $12n_{0761}$, $12n_{0762}$, $12n_{0781}$, $12n_{0790}$, $12n_{0791}$, $12n_{0798}$, $12n_{0802}$, $12n_{0803}$, $12n_{0835}$, $12n_{0837}$, $12n_{0839}$, $12n_{0842}$, $12n_{0848}$, $12n_{0850}$, $12n_{0852}$, $12n_{0866}$, $12n_{0871}$, $12n_{0887}$, 12*n*₀₈₈₈.

As motivation, consider an upper triangular matrix multiplied by a vector:

$$\left(\begin{array}{ccc}\lambda_1 & * & *\\ 0 & \lambda_2 & *\\ 0 & 0 & \lambda_3\end{array}\right)\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right) = \left(\begin{array}{c}\lambda_1x_1 + *x_2 + *x_3\\\lambda_2x_2 + *x_3\\\lambda_3x_3\end{array}\right)$$

Now, declaring a vector (in \mathbb{R}^3) to be "positive" if its last nonzero entry is greater than zero, we see that, if also the eigenvectors λ_i are positive, then multiplication by such a matrix preserves that positive cone of \mathbb{R}^3 , considered as an additive group. So we see

Proposition

If all the eigenvalues of a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^n$ are real and positive, then there is a bi-ordering of \mathbb{R}^n which is preserved by L.

Theorem: All roots positive implies bi-orderable

So our problem reduces to showing:

Proposition

Let F be a finitely generated free group and $h: F \to F$ an automorphism. If all the eigenvalues of $h_*: H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ are real and positive, then there is a bi-ordering of F preserved by h.

One way to order a free group F is to use the lower central series $F_1 \supset F_2 \supset \cdots$ defined by

$$F_1 = F, \quad F_{i+1} = [F, F_i]$$

which has the properties that $\bigcap F_i = \{1\}$ and F_i/F_{i+1} is free abelian. Choose an arbitrary bi-ordering of F_i/F_{i+1} , and define a positive cone of F by declaring $1 \neq x \in F$ positive if its class in F_i/F_{i+1} is positive in the chosen ordering, where i is the last subscript such that $x \in F_i$. If $h: F \to F$ is an automorphism it preserves the lower central series and induces maps of the lower central quotients: $h_i: F_i/F_{i+1} \to F_i/F_{i+1}$. With this notation, h_1 is just the abelianization h_{ab} . In a sense, all the h_i are determined by h_1 . That is, there is an embedding of F_i/F_{i+1} in the tensor power $F_{ab}^{\otimes k}$, and the map h_i is just the restriction of $h_{ab}^{\otimes k}$. The assumption that all eigenvalues of h_{ab} are real and positive implies that the same is true of all its tensor powers. This allows us to find bi-orderings of the free abelian groups F_i/F_{i+1}

which are invariant under h_i . Using these to bi-order F, we get invariance under h, which proves the proposition and therefore the theorem.

We now turn to the proof of the theorem: If K is fibred and its group is bi-orderable, then $\Delta_K(t)$ has some real positive roots.

Theorem

Suppose G is a nontrivial finitely generated bi-orderable group and that $\phi: G \to G$ preserves a bi-ordering of G. Then the induced map

 $\phi_*: H_1(G; \mathbb{Q}) \to H_1(G; \mathbb{Q})$

has a positive eigenvalue.

Theorem: Bi-orderable implies some positive roots

The key idea is to consider a linear automorphism $L : \mathbb{Q}^n \to \mathbb{Q}^n$ which preserves an ordering. Regarding \mathbb{Q}^n as a subset of \mathbb{R}^n , there is a hyperplane $H \subset \mathbb{R}^n$ defined by $H = \{x \in \mathbb{R}^n | \text{ every nbhd. of } x \text{ contains positive and negative points}\}$ H separates \mathbb{R}^n and is invariant under L.

Consider the unit sphere \mathbb{S}^{n-1} of \mathbb{R}^n , and let D denote the closed hemisphere of \mathbb{S}^{n-1} which lies on the "positive" side of H. There is a mapping $D \to D$ defined by

$$x \to \frac{L(x)}{|L(x)|}$$

Since *D* is an (n-1)-ball, this map has a fixed point (Brouwer). This fixed point corresponds to an eigenvector of *L*, which has a positive real eigenvalue.

We conclude with some applications to surgery on a knot K in \mathbb{S}^3 . One removes a tubular neighborhood of K and attaches a solid torus $\mathbb{S}^1 \times D^2$ so that the meridian $\{*\} \times \mathbb{S}^1$ is attached to a specified "framing" curve on the boundary of the neighborhood.

By theorem of Wallace and Lickorish, every compact, orientable 3-manifold (without boundary) can be constructed by surgery on some disjoint union of knots (i. e. a link) in \mathbb{S}^3 .

Surgery

Consider surgery on the trefoil knot:

With +1 framing, as pictured, one gets the Poincaré homology sphere, as constructed by Max Dehn. This is a homology sphere with fundamental group

$$\langle a, b | (ab)^2 = a^3 = b^5 \rangle$$

This is a finite group, of order 120, so its group is certainly **not** left-orderable.

For the next example, we'll need to consider $\widetilde{SL}_2(\mathbb{R})$, which is one of the eight Thurston 3-manifold geometries.

Note that the matrix group $SL_2(\mathbb{R})$ acts on the circle. For example, it acts on $S^1 \cong \mathbb{R} + \infty$ by fractional linear transformations, preserving orientation. In fact as a topological space, $SL_2(\mathbb{R})$ has the homotopy type of the circle. Therefore its universal covering $\widetilde{SL}_2(\mathbb{R}) \to SL_2(\mathbb{R})$ is an infinite cyclic covering. Moreover, $\widetilde{SL}_2(\mathbb{R})$ has a group structure and acts on the universal cover \mathbb{R} of \mathbb{S}^1 by orientation-preserving homeomorphisms. That is, $\widetilde{SL}_2(\mathbb{R})$ is a subgroup of $Homeo_+(\mathbb{R})$, and we conclude that $\widetilde{SL}_2(\mathbb{R})$ is a left-orderable group. If we do surgery on the trefoil using -1 framing, the resulting 3-manifold M, again a homology sphere, has fundamental group

$$\langle a,b|(ab)^2=a^3=b^7
angle$$

G. Bergman observed that this group maps injectively to $\widetilde{SL}_2(\mathbb{R})$, which is a left-orderable group. Thus $\pi_1(M)$ is left-orderable (even though its first Betti number is zero).

It is not bi-orderable or even locally indicable, because it is finitely-generated and perfect (that is, abelianizes to the trivial group).

Theorem

Suppose K is a fibred knot in S^3 and nontrivial surgery on K produces a 3-manifold M whose fundamental group is **bi-orderable**. Then the surgery must be longitudinal (that is, 0-framed) and $\Delta_K(t)$ must have a positive real root. Moreover, M fibres over S^1 .

Ozsváth and Szabó define an L-space to be a closed 3-manifold M such that $H_1(M; \mathbb{Q}) = 0$ and its Heegaard-Floer homology $\widehat{HF}(M)$ is a free abelian group of rank equal to $|H_1(M; \mathbb{Z})|$. Lens spaces, and more generally 3-manifolds with finite fundamental group are examples of *L*-spaces. But there are also many rational homology spheres whose fundamental group is infinite.

Theorem

Suppose $K \subset S^3$ is a knot whose group is bi-orderable. Then one cannot obtain an L-space by surgery on K.

Proof sketch: Suppose surgery on K results in an L-space. By Yi Ni, K must be fibred. Moreover, Ozsváth and Szabó show that the Alexander polynomial of K must have a special form. Then one argues that a polynomial of this form has no positive real roots, so the knot group cannot be bi-ordered. Merci beaucoup!

Next time: Braids, $Aut(F_n)$ and minimal volume hyperbolic 3-manifolds.